
Supplemental Information

Analysis S1. Individual differences

Experiment 1.We examined whether individual differences in working memory capacity,
learning rate across array repetitions, and long-term memory performance were associated with
one another. We operationalized working memory capacity using an independent change
detection task. We operationalized learning rate using the individual subject slopes from the
linear mixed model with random slopes and random intercepts. Finally, we quantified long-term
memory performance as d’ in the final recognition test. The independent measure of working
memory capacity correlated robustly with both long-term memory performance, r = 0.51, p <
.001 and with learning rate in the repeated whole-report task, r = .48, p < .001. The relationship
between learning rate and long-term memory performance was significant but numerically less
robust, r = .30, p = .03. Together, the individual differences analyses suggest that individual
differences in initial working memory capacity, learning rate, and long-term memory
performance were all interrelated in this experiment. However, some of these relationships may
require larger sample sizes to replicate reliably as between-subject correlations require higher
sample sizes than our main within-subjects effects of interest (Baker et al. 2020). In particular,
the reliability of the long-term memory measure (d’: 0.19, hit rate: 0.43, false alarm rate: 0.37)
was lower than either of the two working memory measures (change detection K: 0.75, mean
number correct: 0.97), in part because of lower trials counts for the long-term memory
recognition task.

Experiment 2. In Experiment 2, we found that most, but not all, pairs of measures
correlated with one another. Specifically, although the learning rate in the repeated whole-report
task correlated with both long-term memory performance, r = .30, p = .03, and with the
independent measure of working memory capacity, r = .34, p = .01, we did not find a significant
correlation between long-term memory performance and the independent measure of capacity, r
= .09, p = .51. Thus, although all three measures were indirectly linked via the learning rate in
the repeated whole-report task, we did not see significant interrelationships between all possible
pairs of measures. This may be caused by lower statistical reliability of the long-term memory
measure in this experiment (e.g., overall, d-prime values were closer to floor in this task) or
because of random noise due to the sample size. As in Experiment 1, the reliability of the
long-term memory measure (d’: 0.33, hit rate: 0.35, false alarm rate: 0.46) was lower than either
of the two working memory measures (change detection K: 0.81, mean number correct: 0.97).
Our primary effects of interest were within-subjects effects that we are well-powered to detect
(Baker et al. 2020; Xu et al. 2017), but between-subjects correlations are presented here for
completeness.

https://paperpile.com/c/vh0Yc9/jRKic
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Analysis S2. Characterizing whether participants recalled items in a consistent order.
To quantify how consistently participants reported items across all repetitions of an array, we
computed transition probabilities between consecutive responses throughout the learning
period. To make the logic of the analysis clear, we will give a concrete example. If participants
reported the 6 array items in the same order across all 8 repetitions of the learned array, we
would get a 1x42 vector like this: [1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 …]. So, if we see that the
participant clicked item 1, then there would be a 100% transition probability to 2, and a 0%
transition probability to any other number. If participants reported in a random order each time,
the vector that we created may look something like this: [1 2 3 4 5 6 2 3 1 5 3 6 4 1 6 5 3 2 …].
Now, the transition probability starting from 1 is no longer predictable.

We measured the order in which participants responded to the items within an array, and we
calculated the transition probabilities of the responses across learning of the array (a vector of
42 responses, i.e., 6 item responses x 8 repetitions). From this vector, we computed a transition
probability matrix. In Experiment 1, there are a total of 36 transition possibilities (6 x 6 items,
e.g., 1->1, 1->2, 1->3, … 2->1, 2->2, 2->3, etc). To make the responses to arrays comparable to
one another, we vectorized and rank-ordered the probabilities from each transition probability
matrix (1 matrix was computed for each of the 30 unique arrays). For example, in Array #1,
there may have been a 90% probability of 1->2 and a 0% probability of 1->4. However, in Array
#2 there may have instead been a 90% probability of 1->4 and a 0% probability of 1->2. By rank
ordering the probabilities for each array from high to low, we can then average across them. For
each participant, we ended up with an N array x 36 transition probabilities matrix. After
examining transition probabilities across the entire learning period (Figure S1A), we also
separately computed transition probabilities for the first half of learning (Repetitions 1-4) and the
last half of learning (Repetitions 5-8) for each array (Figure S1B). Finally, we computed two key
baseline conditions of interest. First, in the random response condition, we simulated a random
response order for each repetition of the array. We imposed similar constraints as were required
by the task (i.e., participants must respond to all 6 items only 1 time each during each repetition
of the array). Second, in the 100% consistent condition, we simulated a perfectly consistent
response order for all 8 repetitions of the array.

We found that participants make responses in an order that is much more consistent than would
be expected by chance (gray line). The highest two transition probabilities were notably high
(>90%). A transition probability of 100% would indicate that the participants made adjacent
responses in a consistent order across all 8 repetitions. Therefore, the empirical pattern that we
observed would be consistent with an account in which participants form links between the first
three items starting on Repetition 1 (i.e., two transition probabilities, Item 1->2 and Item 2->3),
and then accumulate a consistent response order for the remaining items at later repetitions.
Consistent with this notion, we separately analyzed transition probabilities for the first half of
repetitions (Repetition 1-4) and the last half of repetitions (Repetition 5-8), and we found that
participants’ responses were significantly more consistent for the later repetitions of an array.
We repeated these analyses for Experiment 2 and found similar results (Figure S2).



Figure S1. Transition probability between responses in Experiment 1. (a) Transition
probability in the order of reporting items across the 8 repetitions of an array. The purple line
represents the empirical data. The black line indicates a baseline for a 100% consistent
response order across all 8 repetitions. The gray line represents responding to items in a
random order on each repetition of the array. Gray dots indicate a significant difference between
the purple and gray lines. (b) Transition probabilities for the first half of learning (Repetitions 1-4)
versus the last half of learning (Repetitions 5-8) for each array. The pink line represents the
empirical data for Repetitions 1-4. The purple line represents the empirical data for Repetitions
5-8. The black line indicates a baseline for 100% consistent responding across all eight
repetitions. The gray line represents responding in a random order on each repetition of the
array. Gray dots indicate a significant difference between the purple and gray lines. Pink dots
indicate a significant difference between the purple and pink lines. In both panels, error bars
represent +/- 1 standard error of the mean. The size of the dots represents significance
thresholds (large p < .001, medium p<.01, small p < .05).



Figure S2. Accuracy as a function of response number and repetition. (A) Accuracy in
Experiment 1 as a function of response number and repetition. (B) Accuracy in Experiment 2 as
a function of response number and repetition.



Figure S3. Transition probability between responses in Experiment 1. (a) Transition
probability in the order of reporting items across the 8 repetitions of an array. The purple line
represents the empirical data. The black line indicates a baseline for 100% consistent
responding. The gray line represents responding in a random order on each repetition of the
array. Gray dots indicate a significant difference between the purple and gray lines. (b)
Transition probabilities for the first half of learning (Repetitions 1-4) versus the last half of
learning (Repetitions 5-8) for each array. The blue line represents the empirical data for
Repetitions 1-4. The purple line represents the empirical data for Repetitions 5-8. The black line
indicates a baseline for 100% consistent responding across all eight repetitions. The gray line
represents responding in a random order on each repetition of the array. Gray dots indicate a
significant difference between the purple and gray lines. Blue dots indicate a significant
difference between the purple and blue lines. In both panels, error bars represent +/- 1 standard
error of the mean. The size of the dots represents significance thresholds (large p < .001,
medium p<.01, small p < .05).



Figure S4. Performance as a function of strategy. Participants answered an open-ended
question asking to describe the strategy they used to perform the repeated whole-report task.
Participants’ responses were scored by 3 raters as being consistent or not consistent with 7
strategy categories. (A) Performance in the main repeated whole-report task as a function of
coded strategy. (B) Performance on the long-term memory recognition task as a function of
coded strategy. Relative to the modal strategy (Spatial Grouping, N=34), these results are
tentatively consistent with semantic coding being a more effective strategy than spatial grouping
(p = .01) and salience (i.e., encoding brightest/darkest first) being a poorer strategy than spatial
grouping (p = .04). However, future work specifically targeting strategy use is needed given the
limitations of this sample, including (1) very small sample sizes when the results are broken out
by strategy and (2) many participants reporting the use of more than one strategy.
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