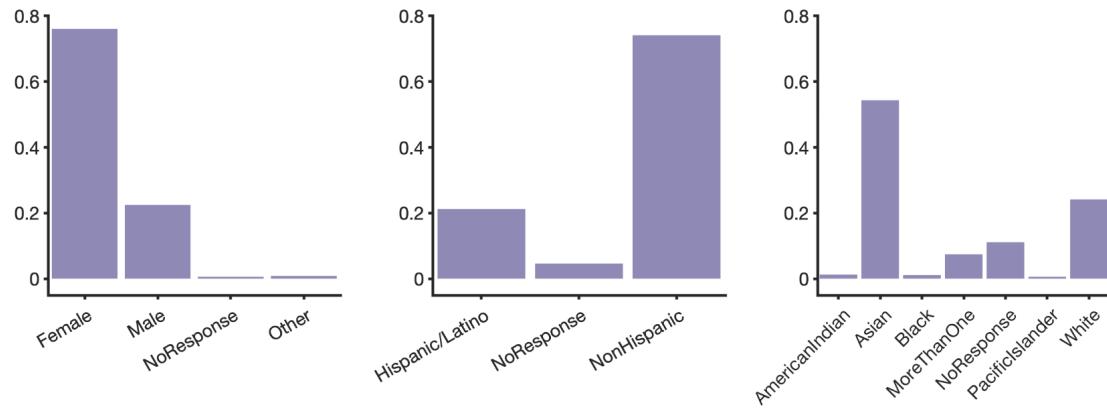
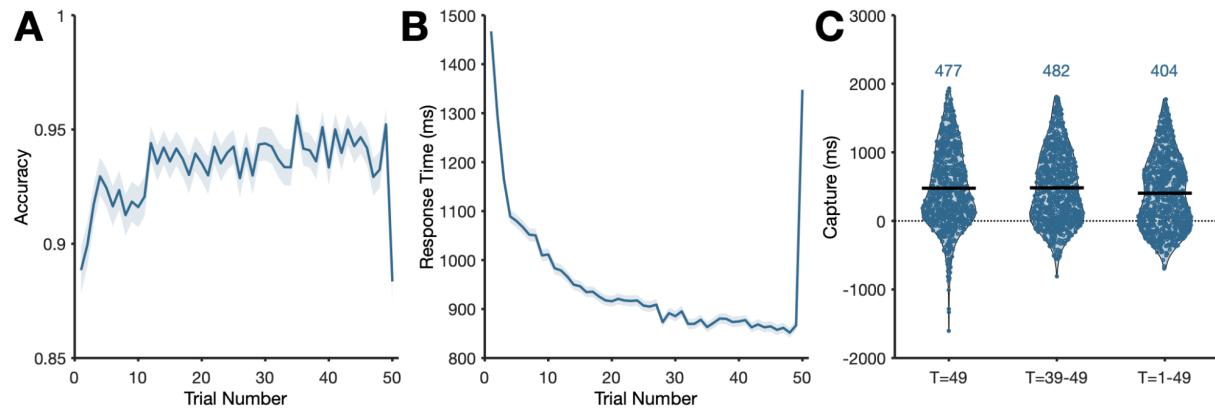
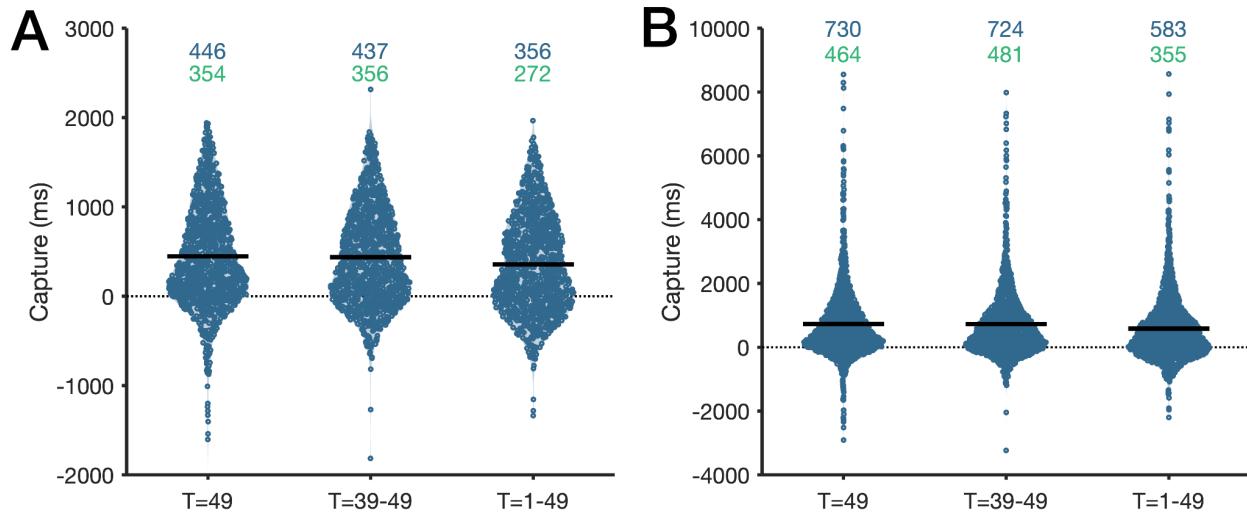

Supplemental Methods & Results

Analysis S1. Experiment 1 population information and exclusion thresholds


In Experiment 1, we excluded a total of 473 out of 1443 participants [32.8%] for various issues related to data quality and eligibility criteria (leaving a total of $N = 970$ participants for analysis). Note, this exclusion rate is higher than a typical in-person experiment in our lab, but similarly high exclusion rates are often seen in online experiments (e.g., Logie & Maylor, 2009). This was our first time recruiting participants from the UCSD SONA pool to an online, remote experiment which may have contributed to the overall high exclusion rates. We did not have an explicit stopping rule; we collected as much data as we could based on the time constraints of the academic quarter (October through November 2019).

Note, some participants met multiple criteria for exclusion, so the following numbers do not add up to 473. $N = 1$ participant [$<0.1\%$] was excluded for failing to meet the minimum age criterion of 18 years old, and $N = 18$ participants [1.25%] were excluded for failing to demonstrate normal color vision (did not correctly identify the embedded number in a digital rendering of an Ishihara plate). A total of $N = 274$ participants (18.99%) were excluded for failing to meet a minimum performance criterion of 75% correct responses. We excluded participants with overall average RT's greater than or less than 2.5 standard deviations beyond the population mean (mean RT < 274 ms or > 1524 ms). This resulted in $N = 8$ [0.55%] excluded for excessively fast average RT's and $N = 35$ [2.43%] excluded for excessively slow RTs. Finally, when preprocessing the data, we automatically trimmed the RT data to exclude all trials where participants responded extremely fast (< 150 ms) or extremely slow (> 2603 ms). We excluded participants who lost more than 15% of their data to this data-trimming procedure, $N = 145$ [10.1%]. The data trimming also resulted in the loss of our single 'critical' trial containing the distractor for $N = 241$ [16.7%] of subjects. Overall performance and response time are shown in Figures S1 and S2. Exclusion criteria cutoffs are shown with red dotted lines.


As noted in the main text, participants had an average age of 20.2 years ($SD = 2.05$, $min = 18$, $max = 47$). It is important to note that $N = 14$ [0.97%] chose not to respond or provided a nonsensical answer excluded from the average age value in the main text, e.g., 222 years old; one participant was excluded because they did not meet our age criterion [18+ years old]. Additional demographics information is shown in Figure S2.


Figure S1. Performance histograms and cutoffs for Experiment 1. (A) Histogram of mean accuracy. The red dotted line denote the 75% cutoff used for performance exclusion. (B) Histogram of median response time. The red dotted lines denote the fast and slow cutoffs use for exclusion.

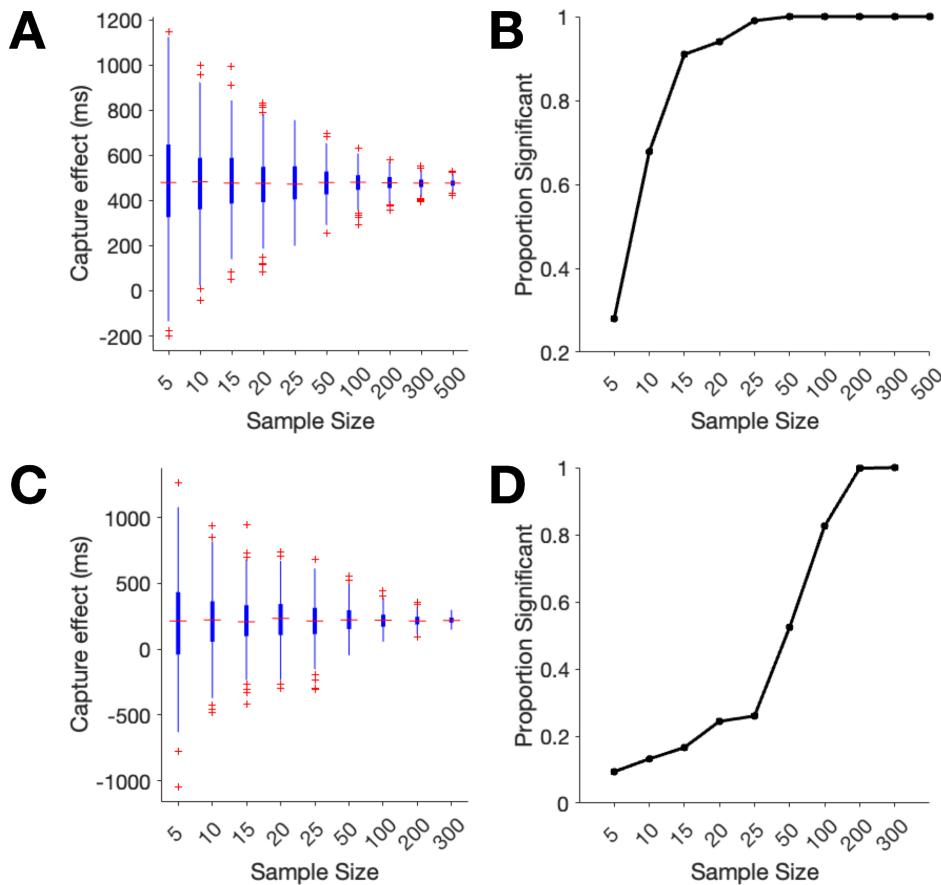
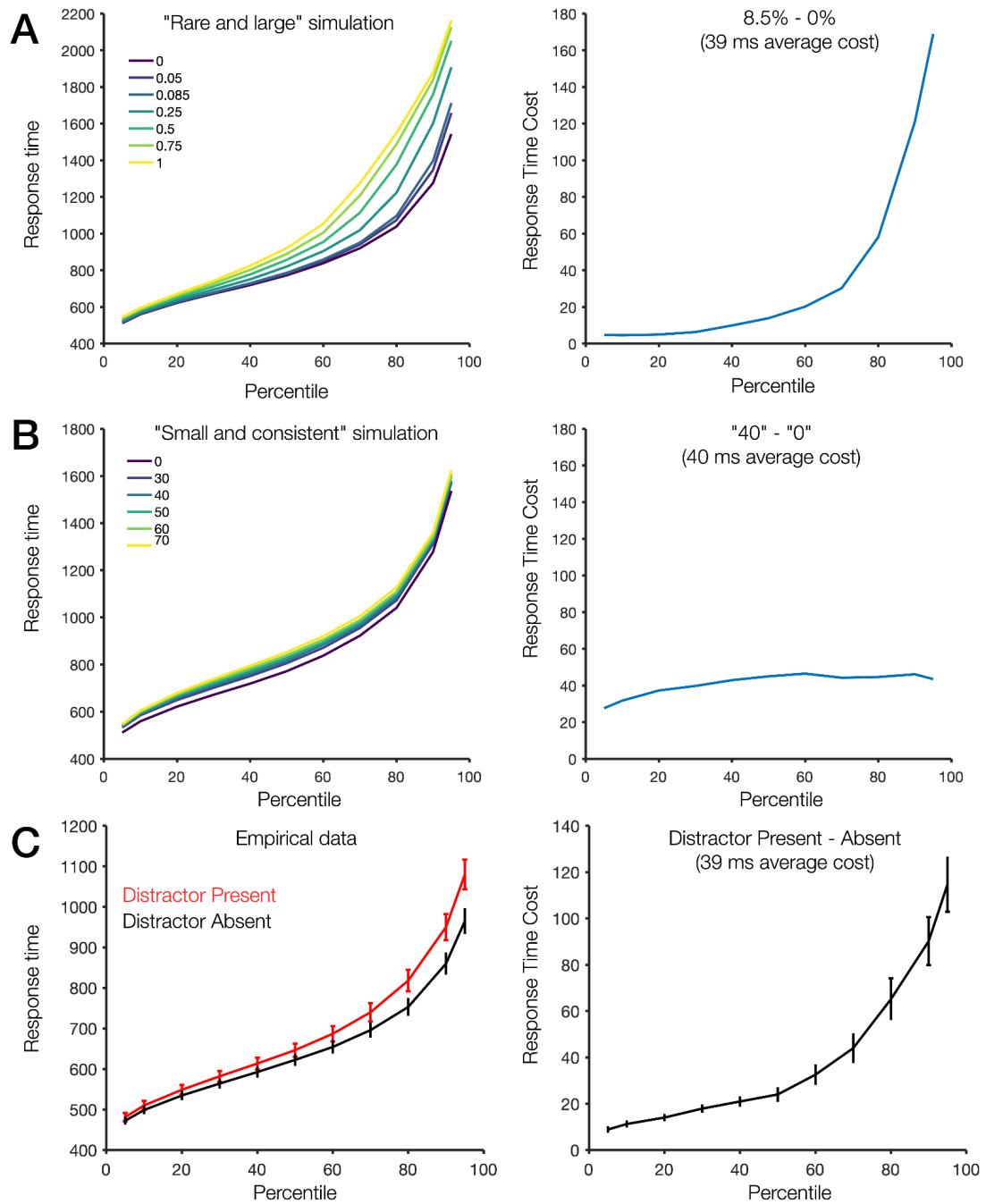

Figure S2. Gender, ethnicity, and race information for Experiment 1. We receive funding from the National Institutes of Health, so the ethnicity and race items were collected using categories aligned with the NIH reporting criteria.

Figure S3. Experiment 1 accuracy, and key effects using accurate trials only. (A) Accuracy as a function of trial number in Experiment 1. (B) Response time as a function of trial number in Experiment 1 calculated using accurate trials only. (C) Capture in Experiment 1 calculated using accurate trials only. The x-axis indicates the method used to calculate the distractor absent response time (1 prior trial [T=49], 10 prior trials [T=39-49], all prior trials [T=1-49]).

Figure S4. Main Experiment 1 results with more liberal data trimming and subject exclusion criteria. (A) The results from Figure 2B with more liberal exclusion criteria. We raised the exclusion criteria to exclude as few people as possible (exclusion criteria: failed color blindness test [1.25%] or below-chance performance of less than 50% correct [4%]). Note, however, since we did still trim the RT values, 16.7% were lost from this figure panel due to having a trimmed RT value on the single distractor present trial. Using a less stringent exclusion criterion had minimal effect on the magnitude of response time costs. Violins show the full distribution of values, and thick black lines show the mean value. Mean values are written in blue text and median values are written in green text. (B) The results from Figure 2B with fewer exclusion criteria (same as Figure S4A) and extremely minimal trimming of response times (excluding only $N = 3$ out of 1443 participants had a response time greater than 10 seconds on the critical distractor present trial). Excluding no trials did result in longer average estimates of capture (583-730 ms), though the median did not move as much as this increase was driven primarily by the long tail (355-464 ms). We note that the majority of additional singleton experiments in the literature have an enforced maximum response deadline (e.g., of 2 seconds). As such, we felt that the figures with trimmed responses times provided a more fair comparison point with the broader literature, since our experiment did not have an enforced response deadline. Violins show the full distribution of values, and thick black lines show the mean value. Mean values are written in blue text and median values are written in green text.

Figure S5. Down-sampling analysis to illustrate the effect of sample size on experimental effects (see: Xu et al., 2017). From our full experimental sample, we randomly down-sampled smaller groups of subjects (Sample Size) and measured the capture effect (500 random iterations). (A) Down-sampling results to detect the overall initial capture effect in Experiment 1. The x-axis shows the sample size of the sub-samples and the y-axis shows the. Standard box-and-whisker plots are shown for each sample size. As expected, the stability of estimates improves with larger sample sizes. (B) Proportion of sub-samples showing a significant capture effect. (C) Down-sampling results to detect a difference in capture as a function of long-term feature history (“Color Constant” condition vs. “Color Variable” condition). The x-axis shows the sample size per condition, and the y-axis shows the difference between the Color Constant and Color Variable conditions. Standard box- and whisker- plots are shown for each sample size. (D) Proportion of sub-samples showing a significant difference between the two conditions of interest. At least $N = 100$ participants per condition are required to reliably detect even a large condition difference (~ 200 ms).

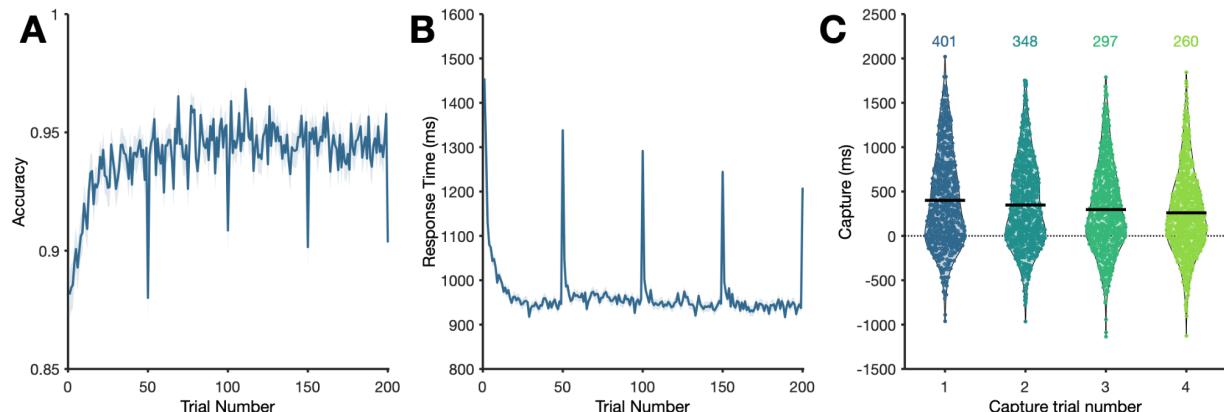

Table S1. Capture effects from the literature review

Authors	Year	Exp	Capture (ms)	Set Size
Theeuwes	1991	Exp 2 (Form)	123.1	5
Theeuwes	1991	Exp 2 (Form)	114.7	7
Theeuwes	1991	Exp 2 (Form)	141.3	9
Theeuwes	1992	Exp 1A (Form)	18.1	5
Theeuwes	1992	Exp 1A (Form)	21.4	7
Theeuwes	1992	Exp 1A (Form)	34.0	9
Theeuwes	1992	Exp 1B (Section 1)	13.2	5
Theeuwes	1992	Exp 1B (Section 1)	15.8	7
Theeuwes	1992	Exp 1B (Section 1)	23.2	9
Theeuwes	1992	Exp 1B (Section 2)	4.2	5
Theeuwes	1992	Exp 1B (Section 2)	6.9	7
Theeuwes	1992	Exp 1B (Section 2)	6.9	9
Theeuwes	1992	Exp 1B (Section 3)	10.5	5
Theeuwes	1992	Exp 1B (Section 3)	10.6	7
Theeuwes	1992	Exp 1B (Section 3)	14.2	9
Theeuwes	1992	Exp 2 (Color)	6.2	5
Theeuwes	1992	Exp 2 (Color)	16.3	7
Theeuwes	1992	Exp 2 (Color)	24.0	9
Theeuwes	1994	Exp 1 (Color)	30.0	4
Theeuwes	1994	Exp 1 (Color)	48.6	7
Theeuwes	1994	Exp 2 (Color)	15.4	4
Theeuwes	1994	Exp 2 (Color)	8.1	7
Bacon & Egeth	1994	Exp 1	21.0	5
Bacon & Egeth	1994	Exp 1	32.6	7
Bacon & Egeth	1994	Exp 1	34.0	9
Theeuwes et al.	2003	Exp 1 (Shape)	208	8
Hickey et al.	2006	Exp 1	103.0	10
Hickey et al.	2006	Exp 2	321.0	10
Leber & Egeth	2006	Exp 1 (Singleton Group)	93.0	5
Leber & Egeth	2006	Exp 1 (Singleton Group)	112.0	9
Chisholm et al.	2010	Exp 1 (AVGP)	93.0	10

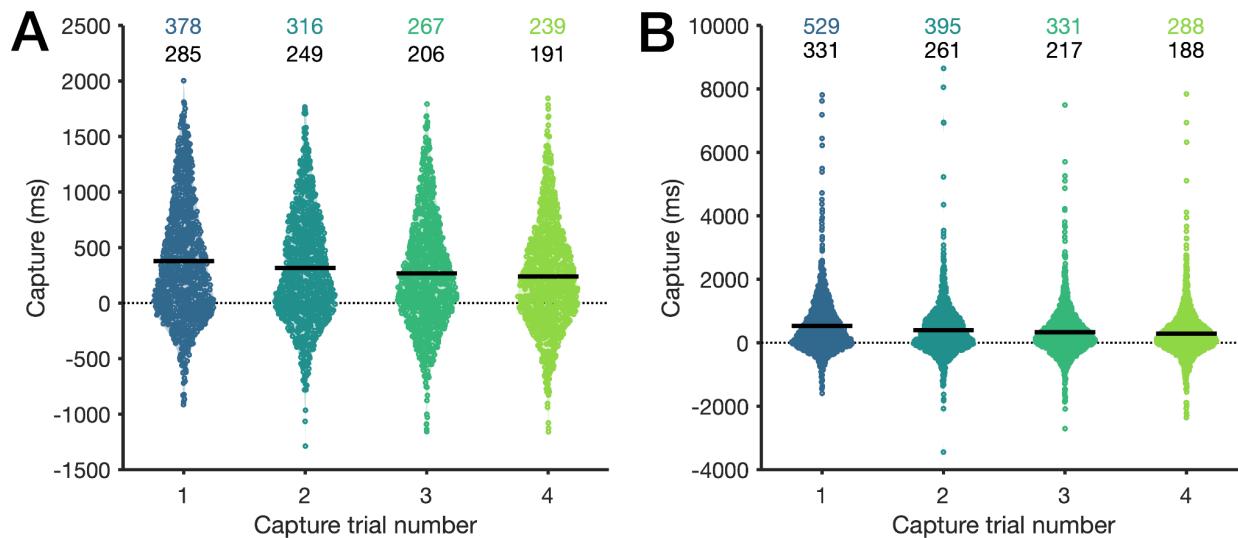
Chisholm et al.	2010	Exp 1 (NVGP)	162.0	10
Hickey & Theeuwes	2011	Exp 1	83.0	10
Hickey et al.	2011	Exp 1	82.0	6
Kiss et al.	2012	Exp 1	81.0	6
Burra & Kerzel	2013	Exp 1 (Unpredictable Target)	67.0	10
Burra & Kerzel	2013	Exp 1 (Predictable Target)	19.0	10
McDonald et al.	2013	Exp 1	124.0	10
Graves & Egeth	2015	Exp 1 (Colors Swapping)	45.0	5
Barras & Kerzel	2016	Exp 1 (Singleton\ Mode)	30.0	8
Barras & Kerzel	2016	Exp 2 (Singleton Mode)	37.0	8
Kerzel & Barras	2016	Exp 1 (Fixed, Singleton)	57.8	5
Kerzel & Barras	2016	Exp 1 (Fixed, Singleton)	76.6	9
Kerzel & Barras	2016	Exp 1 (Random, Singleton)	121.2	5
Kerzel & Barras	2016	Exp 1 (Random, Singleton)	127.5	9
Barras & Kerzel	2017	Exp 1 (Singleton Color, High)	50.1	8
Barras & Kerzel	2017	Exp 1 (Singleton Color, Low)	25.9	8
Gaspelin et al.	2017	Exp 1	51	6
Gaspelin & Luck	2018	Exp 1 (2 colors swapping)	15.0	4
Gaspelin & Luck	2018	Exp 2 (4 colors swapping)	7.0	4
Gaspelin & Luck	2018	Exp 3 (2 colors swapping)	13.0	6
Adams & Gaspelin	2020	Exp 1	53.0	6
Adams & Gaspelin	2020	Exp 2	36.0	6
Adams & Gaspelin	2020	Exp 3	59.0	6
Adam et al.	2021	Exp 1C	31.7	3
Adam et al.	2021	Exp 1C	32.0	4
Adam et al.	2021	Exp 1C	42.8	5
Adam et al.	2021	Exp 1C	51.2	6
Adam et al.	2021	Exp 2A	21.1	4
Adam et al.	2021	Exp 3A	47.5	4
Adam et al.	2021	Exp 3B	38.8	4
Adam & Serences	2021	Exp 1A	32.5	4
Kerzel & Huynh Cong	2022	Exp 1 (Random, Low)	24.0	5
Kerzel & Huynh Cong	2022	Exp 1 (Random, Low)	29.0	9
Kerzel & Huynh Cong	2022	Exp 1 (Random, High)	27.0	5
Kerzel & Huynh Cong	2022	Exp 1 (Random, High)	63.0	9

Kerzel & Huynh Cong	2022	Exp 1 (Blocked, Low)	21.0	5
Kerzel & Huynh Cong	2022	Exp 1 (Blocked, Low)	37.0	9
Kerzel & Huynh Cong	2022	Exp 1 (Blocked, High)	43.0	5
Kerzel & Huynh Cong	2022	Exp 1 (Blocked, High)	46.0	9
Kerzel & Huynh Cong	2022	Exp 2 (Random, Low)	27.0	5
Kerzel & Huynh Cong	2022	Exp 2 (Random, Low)	40.0	9
Kerzel & Huynh Cong	2022	Exp 2 (Random, High)	28.0	5
Kerzel & Huynh Cong	2022	Exp 2 (Random, High)	74.0	9
Hauck & Lien	2022	Exp 1 (Table 1)	72.5	10

This table shows the values plotted in the literature review figure. We have included a total of 75 unique capture values from 24 unique papers (Adam et al., 2021; Adam & Serences, 2021; Adams & Gaspelin, 2021; Bacon & Egeth, 1994; Barras & Kerzel, 2016, 2017; Burra & Kerzel, 2013; Chisholm et al., 2010; Gaspelin et al., 1/2017; Gaspelin & Luck, 2018; Graves & Egeth, 2015; Hauck & Lien, 2022; Hickey et al., 2006, 2011; Hickey & Theeuwes, 2011; Kerzel & Barras, 2016; Kerzel & Huynh Cong, 2022; Kiss et al., 2012; Leber & Egeth, 2006; McDonald et al., 2013; Theeuwes, 1991, 1992, 1994; Theeuwes et al., 2003).


Figure S6. Response time as a function of percentile bin for the “rare and large” versus “small and consistent” simulations and empirical data. (A) Left: Response times as a function of the percentage of “surprise capture” trials mixed into the “distractor absent” distribution. A response time cost of 39 ms was best approximated by sampling 8.5% of trials from the “surprise capture” distribution. Right: The difference between the “8.5% capture” line and the “0% capture” line. The cost is non-zero for all percentile bins, but increases in an exponential fashion for higher percentiles. (B) Left: Response times as a function of the average magnitude of the noisy delay (e.g., small but consistent 40 ms difference). Right: The difference

between the “40 ms cost” line and the “0 ms cost” line. The cost is non-zero for all percentile bins, but does not greatly change as a function of percentile bin. (C) Left: Response times for the distractor absent and present conditions in Adam et al. (2021) Experiment 1C, plotted as a function of percentile bin. Right: The difference between the distractor absent and present lines. The cost is non-zero for all percentile bins ($p < .001$), but markedly increases as a function of percentile bin, similar to the “rare and large” simulation.


Analysis S2. Experiment 2 population information and exclusion thresholds.

In Experiment 2, we excluded a total of 182 out of 1443 participants [15.1%], leaving a total of $N = 1025$ participants for analysis. We did not have an explicit stopping rule; we collected as much data as we could based on the time constraints of the academic quarter (March through April 2020). Note, some participants met multiple criteria for exclusion, so the following numbers do not add up to 182. $N = 1$ participant [$<0.1\%$] was excluded for failing to meet the minimum age criterion of 18 years old, and $N = 14$ participants [1.2%] were excluded for failing to demonstrate normal color vision (did not correctly identify the embedded number in a digital Ishihara plate). A total of $N = 110$ participants (9.1%) were excluded for failing to meet a minimum performance criterion of 75% correct responses. We excluded participants with overall average RT's greater than or less than 2.5 standard deviations beyond the population mean (mean RT < 331 ms or > 1473 ms). This resulted in $N = 9$ [0.75%] excluded for excessively fast average RT's and $N = 25$ [2.1%] excluded for excessively slow RTs. Finally, when preprocessing the data, we automatically trimmed the RT data to exclude all trials where participants responded extremely fast (< 150 ms) or extremely slow (> 2603 ms). We excluded participants who lost more than 15% of their data to this data-trimming procedure, $N = 103$ [8.5%].

As noted in the main text, participants had an average age of 20.3 years ($SD = 1.9$, $min = 18$, $max = 38$). Note, one participant was excluded from this average age because they did not meet our age criterion [18+ years old]. We also collected demographics information based on NIH reporting criteria. When asked about which ethnicity best described them, 284 reported Hispanic or Latino, 883 reported not Hispanic or Latino, and 40 indicated No Response. When asked which race best describes them, 8 reported American Indian or Alaska Native, 633 reported Asian, 22 reported Black or African American, 89 reported more than one race, 6 reported Native Hawaiian or Pacific Islander, 310 reported White, and 139 indicated No Response.

Figure S7. Experiment 2 accuracy, and key effects using accurate trials only. (A) Accuracy as a function of trial number in Experiment 2. (B) Response time as a function of trial number in Experiment 2 calculated using accurate trials only. (C) Capture in Experiment 2 calculated using accurate trials only.

References

Adam, K. C. S., Patel, T., Rangan, N., & Serences, J. T. (2021). Classic Visual Search Effects in an Additional Singleton Task: An Open Dataset. *Journal of Cognition*, 4(1), 34. <https://doi.org/10.5334/joc.182>

Adam, K. C. S., & Serences, J. T. (2021). History Modulates Early Sensory Processing of Salient Distractors. *The Journal of Neuroscience: The Official Journal of the Society for Neuroscience*, 41(38), 8007–8022. <https://doi.org/10.1523/JNEUROSCI.3099-20.2021>

Adams, O. J., & Gaspelin, N. (2021). Introspective awareness of oculomotor attentional capture. *Journal of Experimental Psychology. Human Perception and Performance*, 47(3), 442–459. <https://doi.org/10.1037/xhp0000898>

Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. *Perception*

& *Psychophysics*, 55(5), 485–496. <https://doi.org/10.3758/bf03205306>

Barras, C., & Kerzel, D. (2016). Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference. *Biological Psychology*, 121(Pt A), 74–83. <https://doi.org/10.1016/j.biopsych.2016.10.004>

Barras, C., & Kerzel, D. (2017). Salient-but-irrelevant stimuli cause attentional capture in difficult, but attentional suppression in easy visual search. *Psychophysiology*, 54(12), 1826–1838. <https://doi.org/10.1111/psyp.12962>

Burra, N., & Kerzel, D. (2013). Attentional capture during visual search is attenuated by target predictability: evidence from the N2pc, Pd, and topographic segmentation. *Psychophysiology*, 50(5), 422–430. <https://doi.org/10.1111/psyp.12019>

Chisholm, J. D., Hickey, C., Theeuwes, J., & Kingstone, A. (2010). Reduced attentional capture in action video game players. *Attention, Perception & Psychophysics*, 72(3), 667–671. <https://doi.org/10.3758/APP.72.3.667>

Gaspelin, N., Leonard, C. J., & Luck, S. J. (1/2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. *Attention, Perception & Psychophysics*, 79(1), 45–62. <https://doi.org/10.3758/s13414-016-1209-1>

Gaspelin, N., & Luck, S. J. (2018). Distinguishing among potential mechanisms of singleton suppression. *Journal of Experimental Psychology. Human Perception and Performance*, 44(4), 626–644. <https://doi.org/10.1037/xhp0000484>

Graves, T., & Egeth, H. E. (2015). When Does Feature Search Fail to Protect Against Attentional Capture? *Visual Cognition*, 23(9-10), 1098–1123. <https://doi.org/10.1080/13506285.2016.1145159>

Hauck, C., & Lien, M.-C. (2022). The role of visual working memory capacity in attention capture among video game players. *Psychological Research*, 86(7), 2128–2143. <https://doi.org/10.1007/s00426-021-01640-0>

Hickey, C., McDonald, J. J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of visual attention. *Journal of Cognitive Neuroscience*, 18(4), 604–613. <https://doi.org/10.1162/jocn.2006.18.4.604>

Hickey, C., Olivers, C., Meeter, M., & Theeuwes, J. (2011). Feature priming and the capture of visual attention: linking two ambiguity resolution hypotheses. *Brain Research*, 1370, 175–184. <https://doi.org/10.1016/j.brainres.2010.11.025>

Hickey, C., & Theeuwes, J. (2011). Context and competition in the capture of visual attention. *Attention, Perception & Psychophysics*, 73(7), 2053–2064. <https://doi.org/10.3758/s13414-011-0168-9>

Kerzel, D., & Barras, C. (2016). Distractor rejection in visual search breaks down with more than a single distractor feature. *Journal of Experimental Psychology. Human Perception and Performance*, 42(5), 648–657. <https://doi.org/10.1037/xhp0000180>

Kerzel, D., & Huynh Cong, S. (2022). Search mode, not the attentional window, determines the magnitude of attentional capture. *Attention, Perception & Psychophysics*. <https://doi.org/10.3758/s13414-022-02582-4>

Kiss, M., Grubert, A., Petersen, A., & Eimer, M. (2012). Attentional capture by salient distractors during visual search is determined by temporal task demands. *Journal of Cognitive Neuroscience*, 24(3), 749–759. https://doi.org/10.1162/jocn_a_00127

Leber, A. B., & Egeth, H. E. (2006). It's under control: top-down search strategies can override attentional capture. *Psychonomic Bulletin & Review*, 13(1), 132–138. <https://doi.org/10.3758/bf03193824>

Logie, R. H., & Maylor, E. A. (2009). An Internet study of prospective memory across adulthood. *Psychology and Aging*, 24(3), 767–774. <https://doi.org/10.1037/a0015479>

McDonald, J. J., Green, J. J., Jannati, A., & Di Lollo, V. (2013). On the electrophysiological evidence for the capture of visual attention. *Journal of Experimental Psychology. Human Perception and Performance*, 39(3), 849–860. <https://doi.org/10.1037/a0030510>

Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. *Perception & Psychophysics*, 50(2), 184–193. <https://doi.org/10.3758/bf03212219>

Theeuwes, J. (1992). Perceptual selectivity for color and form. *Perception & Psychophysics*, 51(6), 599–606. <https://doi.org/10.3758/BF03211656>

Theeuwes, J. (1994). Stimulus-driven capture and attentional set: selective search for color and visual abrupt onsets. *Journal of Experimental Psychology. Human Perception and Performance*, 20(4), 799–806. <https://www.ncbi.nlm.nih.gov/pubmed/8083635>

Theeuwes, J., De Vries, G.-J., & Godijn, R. (2003). Attentional and oculomotor capture with static singletons. *Perception & Psychophysics*, 65(5), 735–746. <https://doi.org/10.3758/bf03194810>

Xu, Z., Adam, K. C. S., Fang, X., & Vogel, E. K. (2017). The reliability and stability of visual working memory capacity. *Behavior Research Methods*. <https://doi.org/10.3758/s13428-017-0886-6>