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INTRODUCTION

| Edward K. Vogel>®*® | Edward Awh>*®

Abstract

Working memory (WM) is an online memory system that is critical for holding in-
formation in a rapidly accessible state during ongoing cognitive processing. Thus,
there is strong value in methods that provide a temporally resolved index of WM
load. While univariate EEG signals have been identified that vary with WM load,
recent advances in multivariate analytic approaches suggest that there may be rich
sources of information that do not generate reliable univariate signatures. Here, using
data from four published studies (n = 286 and >250,000 trials), we demonstrate that
multivariate analysis of EEG voltage topography provides a sensitive index of the
number of items stored in WM that generalizes to novel human observers. Moreover,
multivariate load detection (“mvLoad’) can provide robust information at the single-
trial level, exceeding the sensitivity of extant univariate approaches. We show that
this method tracks WM load in a manner that is (1) independent of the spatial posi-
tion of the memoranda, (2) precise enough to differentiate item-by-item increments
in the number of stored items, (3) generalizable across distinct tasks and stimulus
displays, and (4) correlated with individual differences in WM behavior. Thus, this
approach provides a powerful complement to univariate analytic approaches, ena-

bling temporally resolved tracking of online memory storage in humans.
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Tracking online working memory storage is critical for
testing working memory's role as an interface between var-

Working memory serves as a critical interface between
perception, memory, and action. Given the critical role
of working memory in complex cognition, much prior
work has been dedicated to identifying measures of the
human electroencephalogram (EEG) signal that track
working memory load in near real-time. The most widely
used of these measures is the contralateral delay activ-
ity (Vogel & Machizawa, 2004; Vogel, McCollough, &
Machizawa, 2005), though other univariate measures
such as suppressed alpha power and a sustained nega-
tive slow-wave have also been identified (Fukuda, Kang,
& Woodman, 2016; Fukuda, Mance, & Vogel, 2015).

ied cognitive demands. Studies taking advantage of univar-
iate measures like the contralateral delay activity (CDA)
have demonstrated filtering within working memory
(Vogel et al., 2005), the role of working memory in guiding
visual search (Carlisle, Arita, Pardo, & Woodman, 2011;
Emrich, Al-Aidroos, Pratt, & Ferber, 2009; Olivers, Peters,
Houtkamp, & Roelfsema, 2011; Woodman & Arita, 2011),
the role of working memory in buffering retrieval from long-
term memory (Fukuda & Woodman, 2017), and the role of
existing long-term memories in shaping working memory
encoding (Xie & Zhang, 2018). In cases where behavior
is equivocal, neural measures are critical for disentangling
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competing explanations of an observed behavioral pattern.
For example, unobtrusively monitoring the CDA during a
typical visual search task revealed that search templates
initially held working memory are moved to long-term
memory with experience (Carlisle et al., 2011). Given the
clear utility of near real-time measures of working memory
load, we present a novel analytic approach that provides
a strong leap forward in the search for more sensitive and
precise measures of storage in working memory.

Although univariate measures have been very productive
for tackling many important questions about how and when
working memory resources are deployed, they may miss
some important aspects of the memory signal. For example,
in the domain of spatial attention, it has long been known
that lateralized, univariate changes to alpha power (i.e., con-
tralateral alpha suppression) can be used to track attention
to the left versus right hemifield, and that the topography of
alpha power is modulated by finer-grained manipulations of
spatial position (e.g., Rihs, Michel, & Thut, 2007). In this
context, multivariate analysis of alpha topography has been
shown to provide a spatially and temporally resolved index of
covert attention that substantially improves the utility of this
signal for covert tracking of spatial attention (Foster, Sutterer,
Serences, Vogel, & Awh, 2017). In addition to expanding the
utility of known univariate measures, multivariate tools allow
us to track information that was previously opaque to univari-
ate analysis. For example, recent work has shown that motion
direction of a dot cloud (Bae & Luck, 2019a) and a single
remembered orientation (Bae & Luck, 2018, 2019b; Wolff,
Ding, Myers, & Stokes, 2015; Wolff, Jochim, Akyiirek,
& Stokes, 2017) can be decoded from the topography of
event-related potentials (ERPs; time-locked to stimulus or
memory array onset), despite the absence of clear univariate
signals that track this information.

Here, we show that a similar multivariate approach
(“Multivariate load detection,” or “mvLoad”) enables track-
ing of online memory load in a sensitive and temporally
resolved fashion. Note, throughout the article we define
working memory load as the increasing amount of informa-
tion held in mind with increasing memory set size. Although
there is an ongoing debate about the format of mnemonic
representations (e.g., item-based vs. a flexible resource;

Bays, 2018; Hakim, Adam, Gunseli, Awh, & Vogel, 2019),
we do not directly address this issue here. In three experi-
ments, we demonstrate that we can predict working memory
set size from ERPs of small groups of trials (time-locked to
memory array onset) and even with single trials of EEG data.
Further analyses demonstrate that this multivariate decoding
signal has the expected profile of a working memory signal
(e.g., modulated by working memory task demands; shows
higher confusability for supra-capacity working memory
loads) and carries promise for future cross-subject, cross-ex-
periment decoding applications.

2 | METHOD

2.1 | Overview of data sets

We used four previously published data sets to examine
whether and why we can decode working memory load from
the EEG signal. Further methodological details about the par-
ticipants, tasks, and data acquisition can be found in each of
the original published articles (Fukuda, Mance, et al., 2015;
Fukuda, Woodman, & Vogel, 2015; Hakim et al., 2019;
Unsworth, Fukuda, Awh, & Vogel, 2014, 2015). Some high-
level information about the studies is provided in Table 1
and below, and additional information about preprocessing
of the EEG data are available in the Supplemental Methods.
Figure 1 shows examples of the stimuli and task procedures.
Data for all experiments are freely available the Open Science
Framework at https://osf.io/6jkqu/.

2.1.1 | Experiment 1

Participants performed two conditions of a lateralized change
detection task (Unsworth, Fukuda, Awh, & Vogel, 2014,
2015); EEG data were collected from 20 passive electrodes.
In one condition, participants remembered the colors of items
(color change detection; set size 2 and 6). In the other con-
dition, participants remembered the shapes of items (shape
change detection, set size 2 and 6). Here, we collapse across
the color and shape conditions (i.e., just examining set size 2

TABLE 1 Overview of data sets
Experiment  Article Task Set sizes Total trials  Subjects (n)
1 Unsworth et al. (2014, 2015) Lateralized change detection 2,6 116,101 152
2a Fukuda, Mance, et al. (2015) Lateralized and Whole-field change detection 1-4,6,8 23,951 30
2b Fukuda, Woodman, et al. Lateralized change detection 1-8 49916 31
(2015)
3 Hakim et al. (2019) Lateralized change detection; Lateralized attention 2,4 102,358 732

task

Seventy-three unique subjects participated in one or more of the four sub-experiments (total of 97 sessions).
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(a) Lateralized change detection task, Set Size 2

Spatial Cue Cue-to-Array SOA Memory Array Delay Period Test Array
200 ms; 150ms; 500 ms; 1,150 ms; 150 ms; 150 ms; 900 ms; 1,300 ms; Until Response
300 ms 0Oms 150 ms 1,300 ms

(b) Whole-field change detection task, Set Size 2

General Cue

150 ms 1,150 ms 150 ms

(c) Attention task, Target Present trial

100 - 1200 ms
p—————— Target Monitoring Period 4

Spatial Cue
300 ms

Attention Array
(150 ms; Monitor
locations; color
task irrelevant)

FIGURE 1

Cue-to-Array SOA  Memory Array

Delay Period
1,300 ms

Test Array
Until Response

100 - 1200 ms

66.7 ms

Test Array

1,300 ms Until Response

Task schematics for a typical Set Size 2 trial. (a) Lateralized changed detection task used in Experiments 1, 2a, 2b, and 3.

Participants are first cued to one side of space (Red cue box shows symbolic cue used in Experiment 3, for example, attend green side; Blue cue

box shows spatial cue used in other Experiments). Participants remember the items on the cued side and are tested on one of the items. Blue

text shows task timing for Experiments 1 and 2b; Green text shows timing for Experiment 2a; Red text shows task timing for Experiment 3. (b)

Whole-field change detection task used in Experiment 2a. Participants are given a non-spatial cue that the trial is upcoming, remember all items

on the screen across a delay, and are tested on one of the items. (c) Attention task used in Experiment 3. This task serves as a control for working

memory task demands. Participants are cued to one side of the display. Rather than remember the colors of the squares, participants are asked to

pay attention to the spatial positions occupied by the squares. They monitor these positions across a target monitoring period. A target (tilted line at

the same location as one of the item positions) and/or distractor (tilted line at a foil location where no item appeared) appear on 25% of trials. For

illustrative purposes only, the locations of the target and distractor lines are circled. The colored squares shown in the test array are task-irrelevant

(visual control for WM condition); the array indicates when participants should make their response about the target

vs. 6 overall). See, Figure S1 for confirmation that the general
results hold for separately analyzed color and shape conditions.
The full data set includes 183 participants, with 200 trials per
sub-condition (e.g., “shape set size 2”). Participants were ana-
lyzed if they had at minimum 160 trials per sub-condition after
artifact rejection, leaving 152 subjects for analysis (M = 382
trials per set size after collapsing across color and shape).

2.1.2 | Experiment 2a

Participants completed two conditions of a change detec-
tion task: lateralized change detection and whole-field

change detection (Fukuda, Mance, et al., 2015); EEG data
were collected from 20 passive electrodes. Participants
(n = 29) completed 80 trials per set size (1-4, 6, and 8)
in each condition (M = 68.8 trials per set size in each task
condition).

2.1.3 | Experiment2b

Participants (n = 31) completed a lateralized change detec-
tion task (Fukuda, Woodman, et al., 2015); EEG data were
collected from 20 passive electrodes. There were eight set
size conditions (1-8; M = 201.3 trials per set size).
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Experiment 3

The full data set includes 97 sessions from four sub-exper-
iments. Some additional sessions were collected but ex-
cluded according to the artifact rejection criteria detailed
in the original paper (Hakim et al., 2019; EEG data were
collected from 32 active electrodes. In published work, we
demonstrated no major differences between these four sub-
experiments and we performed analyses collapsed across
all four sub-experiments (Hakim et al., 2019). We likewise
combined data across all four sub-experiments here. All
participants completed two key task conditions: (1) a lat-
eralized working memory task, and (2) a lateralized atten-
tion task. In some sub-experiments, the lateralized working
memory task employed color memoranda and in other
cases the lateralized working memory task employed spa-
tial memoranda. In all cases, there were two set sizes (2 or
4 items) in each task (M = 263.8 trials per set size in each
condition). Although participants could complete each sub-
experiment only once, some participants completed multi-
ple sub-experiments. This resulted in a total of 73 unique
subjects. If a participant completed more than one sub-ex-
periment, we averaged their behavioral and classification
results across sessions so that each participant was equally
represented in the full data set.

2.2 | Tasks

2.2.1 | Lateralized change detection

On each trial, participants were first cued to attend one hemi-
field (left or right) with a brief spatial cue. After the cue, there
was a blank interval (“cue-to-array SOA”), and then, the mem-
ory array appeared. The memory array consisted of brightly
colored squares drawn in both hemifields. Participants were
instructed to remember only the colored squares in the cued
hemifield across a blank delay period. At test, a single colored
square was presented at one of the remembered locations. On
50% of trials (“‘same trials”), the test square was the same color
as the item presented at that position. On the other 50% of trials
(“‘change trials™), the test square was a different color from be-
fore. Participants pressed one of two keys to indicate whether
the test square was the same color or had changed colors. The
exact task timing varied slightly across data sets. Experiments
1 and 2b used a cue duration of 200 ms, cue-to-array SOA of
500 ms, memory array duration of 150 ms, and a delay period
of 900 ms. Experiment 2a used a cue duration of 150 ms, cue-
to-array SOA of 1,150 ms, memory array duration of 150 ms,
and a delay period of 1,150 ms. The working memory condition
from Experiment 3 used a cue duration of 300 ms, cue-to-array
SOA of 0 ms, array presentation of 150 ms, delay period of
1,300 ms, and a blank inter-trial interval of 750 ms. Experiment

3 is a combination of four sub-experiments reported in Hakim
et al., 2019. The task events and timing were consistent across
all four sub-experiments. In two sub-experiments participants
remembered color (as described); in the other two sub-exper-
iments, participants remembered the spatial position of items,
and were tested with an item that was either at the same loca-
tion (“same trial”) or with an item that appeared at a foil loca-
tion a minimum of 1.5 objects’-width away from any of the
remembered locations (“different trial”). Prior work revealed
that these stimulus-specific differences did not greatly alter the
CDA, and that it was justified to collapse across these sub-ex-
periments for further analysis (Hakim et al., 2019).

2.2.2 | Whole-field change detection
Experiment 2a used a whole-field version of the change detec-
tion task. This task was very similar to the lateralized change
detection task, except there was no spatial cue. Instead, par-
ticipants received a task-general cue (e.g., a double-sided
arrow that did not indicate a side to attend but gave a tempo-
ral warning that the memory array was coming). Participants
remembered all items from the array, and to-be-remembered
items were presented in both the left and right hemifields
(i.e., “whole-field”). As before, participants remembered
colors across a delay and were probed on one item, and they
reported whether the probed item was the same as or different
from the remembered item. Experiment 2a used a cue dura-
tion of 150 ms, cue-to-array SOA of 1,150 ms, memory array
duration of 150 ms, and a delay period of 1,150 ms.

2.2.3 | Lateralized attention task

In Experiment 3, the relative need for working memory task
demands was manipulated. Participants viewed identical
stimuli as in the lateralized change detection task described
above, but they were given different task instructions which
could be achieved with sustained spatial attention. This
task used identical stimuli and task timing as the lateralized
change detection task, but weasked participants to perform
a sustained attention task rather than a working memory
task. This allowed us to compare mental processes for “at-
tention” and “working memory” tasks while holding visual
stimulation and task timing constant. In prior work (Hakim
et al., 2019), we showed that the CDA was present in the
working lateralized change detection task but not in the lat-
eralized attention task, indicating that the CDA is associated
with working memory task demands. In the task, participants
were first cued to one visual hemifield (e.g., attend the hemi-
field indicated by the green side of a double-sided arrow;
colors counterbalanced across participants). Rather than re-
membering the colors and/or locations of the items in the
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“memory array” (e.g., array of colored squares), participants
were instead instructed to maintain their spatial attention to
the positions occupied by the items. Participants maintained
spatial attention to the positions during a blank array in
order to detect and discriminate a rare target (titled line) that
briefly appeared (66.67 ms) at one of the attended positions
on 25% of trials. Note, there was always one target (line that
occupied one of the same spatial positions that was cued). In
addition, in three of four sub-experiments a distractor line
was shown at a “foil” location.

During the attention task, the color and position of the
item in the “test array” were task-irrelevant. Instead, the test
array simply indicated the time when participants should
make their response. The participants made one of three but-
ton presses: (1) target absent, (2) target present, top tilted left,
and (3) target present, top tilted right. Note, we discarded the
25% of target-present trials from EEG analyses to avoid any
potential physical display confounds. We analyzed only the
75% of trials where there was a fully blank delay period. As
expected, in the working memory task participants stored
slightly more items for set size 4 (M = 1.73) versus set size
2 trials (M = 1.52; p = .003). Likewise, participants had
poorer performance in the attention task when they moni-
tored four locations (M = 78% correct) versus two locations
(M = 82% correct; p = .01), see, Hakim et al. (2019) for fur-
ther discussion.

2.3 | EEG data acquisition

2.3.1 | Experiments 1-2

Experiments 1, 2a, and 2b were collected from 20 passive
tin electrodes (SA Instrumentation Co., San Diego, CA)
mounted in an elastic cap (ElectroCap International, Eaton,
OH). Electrode positions included International 10/20 sites
F3, Fz, F4, T3, C3, Cz, C4, T4, P3, Pz, P4, T5, T6, O1, and
02 and five nonstandard sites: OL midway between T5 and
O1, OR midway between T6 and O2, PO3 midway between
P3 and OL, PO4 midway between P4 and OR, POz mid-
way between PO3 and PO4. Data were recorded with a left-
mastoid reference and re-referenced offline to the algebraic
average of the left and right mastoid. Horizontal electroocu-
logram (EOG) and vertical EOG were collected from three
additional passive electrodes affixed to the face with stick-
ers. Trials containing ocular artifacts, movement artifacts, or
blocking were excluded from analyses.

2.3.2 | Experiment3

Experiment 3 was collected from 30 active Ag/AgCl elec-
trodes (actiCHamp, Brain Products, Munich Germany)

IPSYCHUPHYSIOI.OGY K | sow

mounted in an elastic cap positioned according to the interna-
tional 10-20 system (Fp1, Fp2, F7, F8, F3, F4, Fz, FCS5, FC6,
FC1, FC2, C3, C4, Cz, CP5, CP6, CP1, CP2, P7, P8, P3, P4,
Pz, PO7, POS8, PO3, PO4, O1, 02, Oz). Two additional ac-
tive electrodes were affixed with stickers to the left and right
mastoids, and a ground electrode was placed at position Fpz.
Data were referenced online to the right mastoid and re-ref-
erenced offline to the algebraic average of the left and right
mastoids. Passive electrodes (HEOG, VEOG) and eye track-
ing were used to monitor eye movements and blinks. Trials
containing ocular artifacts, movement artifacts, or blocking
were excluded from analyses.

2.4 | Classification and significance testing
2.4.1 | Single-trial classification
(within-subject)

Classification was performed within a subject, on single tri-
als, and within a given time window on raw, baselined EEG
data (Experiment 1). We divided each trial into 50-ms win-
dows and calculated the average voltage for each electrode
within this window (e.g., 20 electrodes = 20 predictors).
Classification was performed separately within each time
point using a linear discriminant classifier (“classify.m,”
with option “diagLinear” to use the diagonal covariance
matrix estimate; MATLAB, MathWorks, Natick MA). We
chose to use a relatively simple linear classifier to first
demonstrate our effect, but our results are expected to also
generalize to other classification methods such as support
vector machines (SVM; Figure S2). We performed 100 it-
erations of the classification analysis at each point; on each
iteration, we randomly assigned 2/3 of the trials to an inde-
pendent training set and 1/3 of the trials to a held-out test
set. We also confirmed that the trial voltage distributions on
each iteration of the analysis were approximately normally
distributed (Figure S3). A schematic of the classification
procedure is shown in Figure 2a. In all classification proce-
dures, we balanced the number of trials per set size in both
the training and test sets.

2.4.2 | Mini-block classification
(within-subject)

Instead of performing classification on single trials, we av-
eraged together groups of like trials (i.e., the same set size
condition) into “mini-blocks,” and we shuffled the assign-
ment of trials to different mini-blocks across 100 iterations
(Experiments 2 and 3). Classification was still performed
using the same linear classification routine, training on 2/3
of mini-blocks and testing on a held-out 1/3 of mini-blocks
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FIGURE 2 Single-trial decoding of working memory set size in Experiment 1. (a) Schematic of single-trial decoding approach. Decoding was

performed within a participant, separately at each time bin (1 average value per electrode for a 50 ms time bin) using data from all electrodes (Data:

t trials x 20 electrodes; Labels: 1 X ¢ trials). On each iteration of the analysis, we picked a random 2/3 of trials to serve as a training data set, and

the remaining 1/3 of trials were used as a testing data set. (b) Single trial decoding performance over time. Expected chance is 50%; dots indicate

Bonferroni-corrected p < .001. (c) Average single trial decoding performance during the delay period (400-1,000 ms; ***p < .001). (d) Cross-

temporal generalization of classification performance (training and testing across different time bins in the trial). Gray indicates that the pixel did

not survive the cluster-based permutation test

on each iteration. Also note, this classification function
handles both binary and multi-class classification, so the
same general classification methods were used for both
Experiments 1 and 3 (binary) as well as Experiment 2
(multi-class). To assess whether classification general-
ized across tasks (Experiments 2 and 3), we used the same
method except we trained on 2/3 of mini-blocks from one
task (e.g., lateralized change detection) and tested on 1/3 of
mini-blocks from the other task (e.g., whole-field change
detection).

243 |
subject)

Mini-block classification (across-

To test the generalizability of the classification signal
across subjects, we performed a leave-1-subject-out analy-
sis (Experiment 2). To do so, we blocked trials in the same
way as in the within-subjects version of the mini-block
analysis. We trained the classifier on all data on a random
2/3 of mini-blocks from n-1 subjects and tested data on a
random 1/3 of mini-blocks from one held-out subject. For
each held-out subject, we ran 100 iterations of randomly as-
signing individual trials to mini-blocks in both the training
and test sets.

2.4.4 | Statistical tests

In the standard within-subject classification analyses, we
trained and tested on data from the same time bin (e.g.,
train and test on data averaged from 0-50 ms). Significance
of the time-course of overall classification was assessed
via Bonferroni-corrected ¢ tests (one-sided ¢ tests when
comparing to chance level, as we would not expect to find
meaningfully below-chance values; two-sided tests when
comparing between conditions). To assess the generaliz-
ability of the signal across time points, we also performed
a cross-temporal analysis where we trained and tested on
all possible combinations of time-points (e.g., train on the
first time point, test on all other time points). Significance
of the generalizability of decoding was assessed via a
cluster-based permutation test statistic, based on compar-
ing significant clusters of adjacent significant ¢-values to a
permuted distribution (Maris & Oostenveld, 2007), using
a subject-wise permutation function (1,000 iterations)
adapted from Fahrenfort, van Driel, van Gaal, and Olivers
(2018). Significance was always assessed in comparison to
empirical chance values (rather than to theoretical chance,
see, Combrisson & Jerbi, 2015); empirical chance was es-
timated by repeating the same classification analysis using
randomly shuffled training labels.
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3.1 | Experiment 1

3.1.1 | Single-trial classification predicts
working memory load in a large sample

Using a large sample (n = 152, trials = 116,101) and a lin-
ear classifier on raw EEG amplitudes from single trials
(Figure 2a), we could predict working memory load (set size
2 vs. set size 6) in a sustained fashion throughout the delay
period (Figure 2b; dots indicate p < 1 X 1075, Bonferroni-
corrected for 23 time-bins). We could classify set size quite
early in the trial (50-100 ms time bin), although this early
classification could be due to a physical display difference
between the two- and six-item arrays. Importantly, classifica-
tion was sustained throughout the delay in the absence of any
physical display differences. Mean decoding accuracy dur-
ing the delay period (400-950 ms) was 53.2% (SD = 1.7%;
Figure 2c), significantly above the chance level produced
by giving the same classifier shuffled labels, #(151) = 22.5,
p < 1x10™%,95% CI [2.92%, 3.48%], Cohen's d = 1.85.
Finally, decoding generalized to other time-points beginning
at the 400—450 ms time bin and lasting throughout the delay
(Figure 2d; gray boxes indicate that the pixel did not survive
a cluster-based permutation test). Notably, the decoding sig-
nal observed during encoding (100-300 ms) did not general-
ize throughout the delay period, indicating that it is unlikely
that a sensory imbalance signal early in the trial drove the
sustained delay period decoding.

3.1.2 | Global versus lateralized
contributions to decoding

Although our analysis shows that the topography of voltage
values across electrodes predicted working memory load on a
single trial basis, this simple decoding approach was blind to
lateralized EEG signals that track working memory storage
such as the CDA, a well-documented electrophysiological
marker of storage in visual working memory. Thus, the robust
performance of our decoder could not be explained by contri-
butions from CDA activity. Nevertheless, this leaves open the
interesting question of whether load detection could be further
improved by taking lateralized storage signals into account.
To test this, we added eight new predictors corresponding
to single-trial paired difference waves (contralateral minus
ipsilateral, e.g., PO8 minus PO7 for a “remember left” trial,
PO7 minus PO8 for a “remember right” trial). Surprisingly,
we found that adding lateralized predictors did not predict
substantial additional variance beyond the single electrodes
(Figure 3a). On its own, activity from just the eight lateral-
ized predictors likewise tracked working memory load in a
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sustained fashion throughout the delay period (M = 52.9%,
SD =1.7%, p <1 x 107'°, d = 1.67), in line with many past
demonstrations in the CDA literature. Including both single
electrodes and the eight lateralized predictors somewhat im-
proved classification performance beyond the lateralized pre-
dictors alone (53.1% combined vs. 52.9% lateralized alone, p
< .001). Critically, however, a classifier combining both the
eight lateralized predictors and the 20 single electrode predic-
tors did slightly worse than the 20 single electrode predictors
alone (53.1% combined vs. 53.2% single electrodes alone, p
< .001). Further control analyses revealed that training and
testing within a cued side (e.g., train and test on “remember
right” trials) offered only marginal benefits over training and
testing across cued sides (e.g., train on “remember right” test
on “remember left”), see, Figure S4.

Although it is somewhat surprising that adding lateralized
predictors did not improve decoding, topographic plots for
each set size condition suggest that this failure to explain ad-
ditional variance may be due to the coarse spatial distribution
of the signal (Figure 3b) and/or to noisiness of using differ-
ence waves as predictors on a single trial basis. As adding the
lateralized predictors failed to improve classification perfor-
mance, we will continue to use the single electrode classifier
(i.e., giving the classifier the raw voltage value at each elec-
trode). Arguably, insensitivity to stimulus laterality makes
the analysis more flexible and powerful, providing the poten-
tial to train and test classifiers across lateralized and nonlater-
alized working memory tasks; we provide an example of such
cross-training in Experiment 2A/B. In supplemental analy-
ses, we examined decoding accuracy separately for individ-
ual electrodes and groups of electrodes (e.g., occipital alone,
Figure S5), and we confirmed that decoding was not driven
by a global signal alone (Figure S6). Together, the topogra-
phy of voltage changes and the supplementary analyses sug-
gest that broadly distributed changes to voltage values (i.e.,
changes to the degree/extent of frontal positivity and changes
to the degree/extent of posterior negativity) are likely driving
overall decoding performance.

3.1.3 | Improving decoding with mini-block
classification

Although the prior analyses demonstrated that single-trial
classification is extremely robust during the delay period
(d = 1.85), single trials are noisy and thus classification accu-
racy is numerically low (~53% given a chance level of 50%).
To accommodate the lower numbers of trials and participants
in some experiments, we tested whether averaging across
small sub-sets of trials (“mini blocks™) would improve overall
classification accuracy (Figure 4). Here, we performed the
same basic analysis (training on 2/3 of data and testing on 1/3
of data, for 100 iterations of randomly assigning trials to
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training or testing). However, rather than training on single
trials, we averaged small groups of trials together to reduce
noise of each instance given to the classifier. This “mini-
block™ procedure was quite effective at improving overall
classification accuracy, both early and late in the trial
(Figure 2a). During the encoding period (100-300 ms), clas-
sification accuracy improved monotonically with the number
of trials per mini-block, F(1.1,155.7)' =2,615,p < 1 x 107'%,
;112) =.95. In the peak sensory time bin (200-250 ms), decoding
accuracy reached as high as 89.4% (SD = 7.7%; 25 trial mini-
blocks). During the delay period, classification accuracy like-
wise improved monotonically with the number of trials per
mini-block, F(1.03,156.14) = 571.6, p < 1 x 107>, =79,
topping out at 63.9% (SD = 7.1%) with 25 trial mini-blocks
(Figure 2b). Note, however, the number of trials that may be
used in mini-blocks is limited by the number of available trials
per condition. For consistency of comparisons across experi-
ments, we will use 10-trial mini-blocks for further analyses.
This will allow us to improve classification accuracy while
still accommodating the varied numbers of trials per experi-
ment (~80—400 trials per set size).

!Greenhouse—Geisser correction applied when the assumption of sphericity
is violated.

== Shuffled

=== Single electrodes
=== Single electrodes + pairs

2N

Average

FIGURE 3 Adding lateralized
predictors did not improve classification
performance. (a) We created eight additional
predictors by taking the difference (contra—
ipsi) of all matched pairs of lateralized pairs
(“pairs,” color-coded in the inset diagram).
Lateralized predictors did a good job of
predicting working memory load but did

not improve classification above the level of
the 20 single electrodes. In this figure, dots
represent Bonferroni-corrected significance
(small p < .05, medium p < .01, large p <
.001). Purple dots represent the difference
between single electrodes and pairs alone.
Green dots represent the comparison
between “single electrodes + pairs” and
pairs alone. (b) Topographical plots of delay
period activity for each set size condition,
separated by side or averaged across both
sides. Color scale is in microvolts (uV)

3.2 | Experiment 2
3.2.1 | Decoding differentiates item-by-item
increments in load

In Experiment 1, we demonstrated that we can discriminate
between two memory load conditions (set size 2 vs. set size
6) using the multivariate EEG signal across electrodes (train-
ing and testing the classifier within a subject). In Experiment
2A and 2B, we tested whether this within-subject classification
signal is sensitive to finer-grained set size manipulations. In
Experiment 2A, participants performed two working memory
tasks (lateralized and whole-field) with six set sizes (1-4, 6,
and 8); In Experiment 2B, participants performed a lateralized
working memory task with eight set sizes (1-8). As shown in
Figure 5a, we could robustly predict set size in a sustained fash-
ion throughout the delay period (all p's < 1 X 107%, Cohen's
d =1.55,1.49, and 2.27 for panels left to right in Figure 5a). As
in Experiment 1, this classification signal sustained through the
end of the delay and generalized to all later time bins beginning
mid-way through the delay (650-700 ms, 600—650 ms, and
600-650 ms, for the panels shown left to right in Figure 5b).
In addition to examining overall decoding, the inclusion of
more set sizes in Experiments 2A and 2B provided the chance
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FIGURE 4 Decoding accuracy by number of trials in
classification “mini-blocks.” We examined changes to decoding
accuracy for training and testing on single trials versus training and
testing on averaged values from small groups of trials (e.g., a “mini
block” of five Set Size 2 trials). (a) Classifier accuracy over time

for single trial decoding and mini-block decoding of various block
sizes. Shaded error bars indicate + 1 SEM. (b) Mean classification
accuracy during the delay period (400 ms—end of delay). ***p < .001
(Bonferroni corrected, five comparisons)

to look at classifier errors and discriminability of set sizes.
Figure 6a,b shows confusion matrices for the encoding period
(100-300 ms) and delay period (400 ms to end of delay) in
Experiments 2A and 2B. Much prior work on univariate neu-
ral signatures of working memory maintenance (e.g., Todd &
Marois, 2004; Vogel & Machizawa, 2004; Xu & Chun, 2006)
has found that, consistent with a capacity limit of 3—4 items,
univariate measures increase from set sizes 1 to 3, but reach
an asymptote around 3—4 items (but see Bays, 2018). Given
this key signature of univariate working memory measures, we
predicted that delay period decoding, but not sensory period

IPSYCHUPHYSIOI.OGY g | | o

decoding, should show particularly poor or no discriminabil-
ity among larger set sizes. To test this, we compared confu-
sion matrix discriminability among the lower set sizes (1-3
in Experiment 2A, 1-4 in Experiment 2B) versus discrimin-
ability among higher set sizes (4,6,8 in Experiment 2A, 5-8 in
Experiment 2B) in both the encoding period and delay period.
Discriminability was quantified as the difference between the
true category value (e.g., proportion of the times the classifier
chose set size 1 when the true value was 1) and the mean of
the incorrect values (e.g., how often the classifier instead chose
other low set sizes 2 or 3). As we predicted for the delay period
signal, we observed significantly higher decoding among low
set sizes than high set sizes for all three experiments (p < .001)
and we observed a null effect for discriminability among high
set sizes during the delay in all three experiments (p > .10). We
likewise observed higher discriminability among low set sizes
than high set sizes during the sensory period (100-300 ms, all
p's < .01) but significant encoding period decoding for both
high and low set sizes (all p's < .001). For uncluttered visual-
ization, here we have shown confusion matrices as color-scales;
Please see, Figure S7 in the supplemental for numerical values
in each cell of the confusion matrix. These effects was similar
when we instead used many pairwise classifiers to test which
set sizes were discriminable from one another during the delay
period (Figure S8). As such, we found a general pattern of re-
sults that is consistent with a delay period working memory
signal, which is expected to show higher confusability among
supra-capacity set sizes. However, future work will be needed
to examine changes to decoding while perfectly controlling for
display-wise sensory differences. For example, it is unclear
whether the poorer discriminability for high versus low set sizes
during the encoding period (100-300 ms) was driven by bot-
tom-up sensory differences or by attentional selection of items
(e.g., a capacity limit in the number of selected items could con-
tribute to the increased confusability for higher set sizes even
during the early encoding period).

3.2.2 | Generalization of classification
across subjects and tasks

Up to this point, we have always trained and tested the classi-
fier within a given subject. Experiment 2 provided an opportu-
nity to examine the generalizability of the classification signal
across tasks, subjects, and experiments with distinct stimulus
displays. In Experiment 2A, the same subjects performed two
different working memory task variants (one lateralized with
distractors presented in the irrelevant hemifield, one whole-
field display that contained no distractors). Thus, Experiment
2A provided the opportunity to look at decoding within the
same subject, but across distinct tasks (Figure 7a-b). Across-
task decoding was overall significant during the delay period,
indicating some degree of generalizability when training and
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FIGURE 5 Decoding accuracy in Experiments 2A and 2B. (a) Classification accuracy over time for Experiments 2A and 2B. Chance level is

1/6 in Experiment 2A and 1/8 in Experiment 2B (black line depicts empirical chance from shuffled analysis). Shaded error bars represent + 1 SEM.

Transparent gray lines represent individual subjects. Dots indicate Bonferroni-corrected significance of each 50 ms time-bin (small dots, p < .05,

medium, p < .01, large, p < .001). (b) Cross-temporal generalization of

classification performance (training and testing across different time bins in

the trial) for Experiments 2A and 2B. Gray indicates that the pixel did not survive the cluster-based permutation test

testing within- versus across tasks (p < 1 X 107%%). However,
decoding accuracy was significantly lower when training
and testing across tasks versus within a task (p < 1 X 107%).
We quantified the difference in classification accuracy be-
tween within- and across-task decoding across three task
epochs: encoding (100-300 ms), early delay (400-900 ms),
and late delay (900 ms to end of delay). We found a main
effect of Training (better performance for within-vs. across
tasks), F(1,29) =79.25,p < 1 X 10_9, nﬁ = .73, and of Epoch
(better performance earlier in the trial), F(2,58) = 31.49,
p<l1lx 10_9, nﬁ = .52. We also found an interaction of
Training and Epoch, F(1.50,43.44) =34.81,p < 1 X 10_7, 17[2)
= .55, indicating that the late delay period signal was more
robust to cross-generalization across task variants than the
early sensory signal (i.e., during the late delay period there
was no difference in classifier accuracy for within-vs. across-
task training).

In Figure 7c-d, we examined the ability of the classifica-
tion signal to generalize across subjects within Experiment
2A, showing that there is a generalizable multivariate sig-
nature of working memory load in humans. We trained the
classifier on 2/3 of data from n-1 subjects, and tested the clas-
sifier on 1/3 of data from one held-out subject. For both the
within- and across-subjects analyses, we performed the anal-
ysis separately for training within-a task versus across tasks
(as above). Across-subject decoding was overall significant

during the delay period (p < 1 X 1072, In Figure 7c-d, we
have collapsed across this task dimension but it is depicted
in Figure S7. Similar to generalizing across tasks, we found
that found a main effect of Training (better performance for
within-vs. across subjects), F(1,29) = 4533, p < 1 X 10_6,
nf, = .61, and of Epoch (better performance earlier in the
trial), F(2,58) = 27.19, p < 1 X 10_8, ni = .48. We again
found an interaction of Training and Epoch, F(2,58) = 44.94,
p<1x107' ;1; = .61, indicating that the late delay period
signal was more robust to cross-generalization across sub-
jects than the early sensory signal.

Finally, in Figure 7e-f, we examined the ability of the
classification signal to generalize across subjects from dif-
ferent experimental samples. These experiments were the
same in some important ways (e.g., same electrode mon-
tage, sampling rate, and similar tasks), but differed in many
minor ways (e.g., exact size of stimuli). We trained the clas-
sifier on 2/3 of data from n-1 subjects in one experiment
(e.g., train Experiment 2A) and tested the classifier on 1/3
of data from one subject in the other experiment (e.g., test
Experiment 2B). For both the within and across experiment
analyses, we again performed the analysis separately for
training within-versus across tasks. Across-experiment de-
coding accuracy was overall significant during the delay pe-
riod (p < 1 X 107%). In Figure 7e-f, we have collapsed across
the task dimension but it is depicted in Figure S9. We found
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that, relative to training across subjects but within a specific
experiment, training across subjects and across experiments
was slightly worse (Figure 7e-f), as indicated by a main effect
of Training, F(1,29) =31.33,p <1 x 107>, n’=.52. Here, we
found no main effect of Epoch, F(2,58) = 1.91, p = .16, ;15 =
.06, and no interaction of Training and Epoch, F(2,58) = .60,
p=.55, nﬁ = .02, indicating that the performance decrement
for training across versus within experiments was consistent
throughout the trial.

3.3 | Experiment3

3.3.1 | Delay-period decoding is specific to
working memory task demands

In all experiments discussed so far, the amount of sensory
stimulation was confounded with set size (i.e., there was

more sensory stimulation on higher set size trials). Although
our analyses suggest that sustained delay period decoding
likely was not driven by this transient sensory confound (e.g.,
decoding of set sizes generalized among time points within
the delay period, but decoding during the stimulus period did
not generalize to the delay period), we wanted to test whether
delay-period decoding is modulated by working memory task
demands while holding visual stimulation constant. To do so,
we examined data from Hakim et al. (2019). In this experi-
ment, participants performed two different cognitive tasks
using visually identical stimuli. In one condition (“attention’)
participants performed a spatial attention task. Prior work has
shown that this condition did not recruit neural signatures of
working memory maintenance (i.e., CDA was absent). In
the other condition (“working memory,” WM), participants
performed a typical working memory task, and robust sig-
natures of working memory maintenance were observed.
This experiment thus provides a critical test of whether delay
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period decoding of set size respects the relative recruitment
of working memory task demands while holding the sensory
confound constant (i.e., the difference in sensory stimulation
between set sizes 2 and 4 is identical for the working memory
and attention task conditions).

Consistent with a signature of working memory mainte-
nance, we observed sustained decoding of set size throughout
the delay period when participants performed the working
memory task, but not when they performed the spatial at-
tention task (Figure 8a). To quantify this effect, we again
divided data into the same three task epochs (encoding, early
delay, and late delay). A repeated measures ANOVA with
within-subjects factors epoch and task revealed a main ef-
fect of task, F(1.80,129.68) = 47.79, p < 1 x 107, =
.40, a main effect of epoch, F(1,72) =25.90, p < 1 X 10_5,
11[2) = .27, and an interaction of task and epoch, F(2,144) =
3.46, p = .034, 111127 = .05, Figure 8b. This demonstrates that
early in the trial, when the sensory confound likely contrib-
uted to decoding, we observed no difference in decoding
strength between the two task conditions. However, during
the delay period, decoding was significantly weaker in the
attention condition and completely disappeared by the late
delay period (Figure 8b). This pattern of results is consis-
tent with sustained delay period decoding as being driven
by working memory task demands. To show that the null
effect in the attention condition was not driven by a rela-
tively weaker training set, we performed classification while
training and testing across tasks. If the lack of decoding in
the attention condition was just due to the attention condition
serving poorly as a training set, then training on the working
memory task should rescue delay period decoding for the
attention task. However, we found no evidence of sustained
delay period decoding when training across tasks. Although
we were initially able to discriminate between set sizes, this
early classification dissipated by around 700 ms (Figure 8c).
We again performed an ANOVA with factors epoch and
task (train attention, test WM vs. train WM, test attention).
We found a main effect of epoch, F(1.74,125.41) = 46.55,
p<1x1075, n? =39, an effect of task, F(1,72) = 6.38, p =
.014, ni = .08 (slightly better overall decoding when training
on the attention task, counter to the hypothetical explanation
of poor attention decoding), and no interaction of task and

epoch, F(2,144) = 1.19, p = .31, nﬁ = .02 (Figure 8d). Thus,
this analysis suggests that multivariate load detection is de-
termined by storage in working memory rather than by the
physical characteristics of the display, or the deployment of
spatial attention alone.

3.4 | Cross-experiment analyses
3.4.1 | Individual differences in decoding
predict overall behavioral performance

Finally, we combined data from all experiments (unique
subjects only) to test whether classification performance
relates to behavioral performance. We reasoned that par-
ticipants with higher working memory capacity would have
more states to discriminate between (e.g., we would expect
someone with a capacity estimate of 1.0 items to show simi-
lar neural signatures on all trials, whereas someone with a
higher capacity estimate would have greater variability in
delay period signatures across set size conditions). As such,
we predicted that those with higher working memory capac-
ity would likewise have higher delay period classification
accuracy. Within each experiment, we z-scored behavior
(average capacity, or “K”) and average delay period classi-
fication accuracy. This step was necessary to normalize dif-
ferences in chance level (e.g., 50% vs. 16%) and behavioral
performance across experiments. Also note, we used the 10-
trial “mini-block™ data for all four experiments. We excluded
participants with capacity values lower than two SD's below
the group mean (i.e., who were not performing the task as
instructed). We then performed a correlation using all unique
subjects from all experiments. We found that classification
accuracy and capacity were correlated, r = .26, p < 1 X 10_4,
95% CI = [.14, .36]. Correlations of raw classification ac-
curacy and behavior values are shown in Figure 9b. Note,
the overall correlation values did not noticeably change if we
included subjects with poor behavioral performance or if we
included duplicate subjects (Figure S10). Likewise, the cor-
relation between classification accuracy and was similar in
size to previously observed correlations between CDA am-
plitude and behavior (Figure S11). Interestingly, however,
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classification accuracy and CDA amplitude predicted unique
behavioral variance (Analysis S1).

4 | DISCUSSION

Here, we used a large data set (four published experiments,
n = 286, >250,000 trials) to develop multivariate load detec-
tion (“mvLoad” ), a novel approach for tracking human work-
ing memory load using the raw EEG signal. Multivariate load
detection offers several key advances over existing univari-
ate working memory signals (e.g., contralateral delay activ-
ity, “CDA”). Most importantly, multivariate load detection is
generalizable across stimulus/task differences, observers, and
experiments, suggesting that it taps into a common human
electrophysiological signature of working memory load. In
the contexts analyzed here, it was possible to train the clas-
sifier on one set of observers, and then, examine the deploy-
ment of working memory resources in a new task and set of
observers. As such, multivariate load detection will allow us
to study working memory in new, more flexible task contexts
(e.g., without relying on lateralized displays which incur a
dual task of filtering out one hemifield) and applied settings
(e.g., brain-computer interfaces).

The benefits of multivariate load detection mirror simi-
lar advances made in multivariate detection of the locus of
spatial attention (Foster et al., 2017; Rihs et al., 2007), atten-
tional selection (Fahrenfort, Grubert, Olivers, & Eimer, 2017;
Munneke, Fahrenfort, Sutterer, Theeuwes, & Awh, 2019),
and an item's visual features (Bae & Luck, 2018, 2019a;
Wolff et al., 2015). Lateralized univariate EEG signals (e.g.,
lateralized alpha power, N2PC, CDA), have been fundamen-
tal for developing an understanding of human attention and
working memory. By presenting identical visual stimuli in
both hemifields, these lateralized signals exploit the contra-
lateral organization of the human visual system. Conversely,
however, to take advantage of these lateralized signals we
must use specialized lateralized displays.

Lateralized displays offer some advantages, such as elim-
inating physical confounds and allowing for clever designs
that place stimuli that are “invisible” to the analysis on the
vertical mid-line (Feldmann-Wiistefeld & Vogel, 2019;
Hickey, Di Lollo, & McDonald, 2009; Hillyard & Anllo-
Vento, 1998; Hillyard, Hink, Schwent, & Picton, 1973; Vogel
& Machizawa, 2004). However, lateralized CDA designs also
introduce potential disadvantages. First, when presenting
to-be-remembered items in both hemifields, there is some
ambiguity as to whether differences in the CDA and behav-
ior are confounded by the joint need to suppress irrelevant
visual information. With increasing memory set size, there
is both an increased need to remember more information and
an increased amount of irrelevant visual information to sup-
press. Second, to measure lateralized components such as the

CDA, we must construct a difference score (contralateral—
ipsilateral). The statistical reliability of difference scores is
poor when the two underlying measures are highly correlated
(Rodebaugh et al., 2016). Due to the poor spatial resolution
of EEG, trial-by-trial voltage scores for contralateral and ipsi-
lateral electrodes are highly correlated, thus the reliability of
single-trial difference scores is lower than from single elec-
trodes. Although we still obtain reliable estimates of CDA
amplitude when averaging across many hundreds of trials,
this traditional univariate approach potentially throws away
valuable single-trial information that could be exploited to
better predict working memory load.

In the current work, we used several data sets to demon-
strate the utility of multivariate load detection in many contexts.
We consistently found robust, sustained decoding of working
memory load throughout the memory delay period, and this
decoding predicted individual differences in working memory
behavior. Multivariate load detection was sensitive to fine-
grained variations in memory load as well as to working-mem-
ory specific (as opposed to general attentional) task demands.
Furthermore, we showed that multivariate load detection gen-
eralized across stimulus differences (e.g., remembering colors
vs. shapes; lateralized vs. whole-field presentation of the items)
and generalized across observers (e.g., we can train the decoder
on a large group of subjects, then predict memory load in a
new subject whose data the classifier has never seen). The high
generalizability, in particular, will be critical for future work;
using the approach outlined here, we think it is possible to
build a generalizable, pre-trained classifier which will be able
to predict visual working memory load using relatively small
amounts of data from new tasks and observers.

Future work will need to address some potential lim-
itations of the current work. First, because we used pre-
viously published data sets, we were limited in our ability
to perfectly control for potential confounds such as vi-
sual stimulation (i.e., transient luminance changes also
increased with memory load). Future work using manip-
ulations such as selective encoding (i.e., holding visual
stimulation constant but varying which items are encoded)
or retro-cues (Christophel, Hebart, & Haynes, 2012;
Christophel, lamshchinina, Yan, Allefeld, & Haynes, 2018;
Griffin & Nobre, 2003; Harrison & Tong, 2009; Lepsien
& Nobre, 2007; Sprague, Ester, & Serences, 2016), will
be critical for disentangling encoding-related decoding
from bottom-up, visually driven decoding of load during
the early part of the trial. Second, a key contribution of
this work is its demonstration of the feasibility of build-
ing a generalizable, pre-trained classifier for detecting
working memory load in new tasks and observers. Here,
we demonstrate that this type of generalizability is feasi-
ble across some stimulus differences and across observers
within a site (i.e., controlling for high-level differences in
experimental procedures such as amplifier, referencing,
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and montage). Future work will be needed to further in-
vestigate the cross-site generalizability of multivariate
load detection (e.g., variations in EEG systems, reference,
experimental procedures, and subject pools) to build a
generalizable, pre-trained working memory load detector
(Dansereau et al., 2017; Scheinost et al., 2019).

Finally, we anticipate that similar approaches will also be
useful outside of EEG. In the fMRI literature, for example,
prior work has found univariate, load-dependent changes in
parietal and prefrontal cortex (Braver et al., 1997; Cohen
et al., 1997; Todd & Marois, 2004, 2005; Xu & Chun, 2006).
In early visual cortex, in contrast, there are no load-dependent
changes to the univariate signal with load. Despite this, the
identity of a single item can be robustly decoded from visual
cortex (Harrison & Tong, 2009; Kamitani & Tong, 2005;
Serences, Ester, Vogel, & Awh, 2009). Furthermore, the fidel-
ity of item-specific decoding in visual cortex is degraded with
load (Emrich, Riggall, LaRocque, & Postle, 2013; Sprague,
Ester, & Serences, 2014). However, no extant work has looked
at multivariate neural signatures of load in visual cortex for
supra-capacity set sizes, in part because of limitations of the
spatial resolution of the method (with more than 2-3 items,
the voxel population receptive fields would start to overlap
substantially). Multivariate load detection, as performed here,
could be used to probe whether working memory load, per
se, can be decoded in visual cortex. Furthermore, this method
could be used to test whether long-observed univariate sig-
natures in parietal and frontal cortex are purely univariate
in nature, or if more information about memory load can be
gleaned by applying multivariate methods.

We argue that multivariate load detection (“mvLoad”) is
a generalizable electrophysiological marker of human work-
ing memory load, and that this approach will allow for the
unprecedented combination of disparate data sets to build a
powerful, generalizable model of human working memory
load. Because multivariate load detection is generalizable
across tasks and observers, we anticipate that this method
will be useful in many basic and applied research settings
(i.e., unobtrusively monitoring the contribution of working
memory during other cognitive contexts). All data shown
here are available on the Open Science Framework (upon
publication). We encourage other labs using distinct popula-
tions (e.g., developmental; clinical), research sites (e.g., out-
side of the U.S.), and task variants to use our published data
to test the extent of the generalizability of this new method.
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