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The mechanisms by which information is maintained in work-
ing memory are still not fully understood. Ample evidence 
supports a role for sustained neural activity in prefrontal1–3 and 

other cortices4,5, possibly supported by attractor dynamics in recur-
rently connected circuits6,7. However, recent studies have argued 
that memories may be maintained without persistent firing-rate 
tuning during memory periods8. This ‘activity-silent’ memory can 
be mediated by slowly decaying intrinsic or synaptic mechanisms, 
such as short-term synaptic plasticity9,10, or by activity-dependent 
intrinsic mechanisms with a long time constant11–13 that could allow 
the reactivation of memories from latent storage. This computa-
tional proposal has received support from neuroimaging studies, 
whereby in some working memory tasks, despite good memory 
performance, stimulus information cannot be retrieved from neural 
delay activity, but later robustly reappears14 during comparison or 
response periods (but see also ref. 15).

The apparent incompatibility between activity-based and 
activity-silent memory maintenance has led to viewing them as 
exclusive alternatives8. However, modeling implementations of 
activity-silent conditions invariably require the network to be con-
figured close to the same attractor regime9 that enables persistent 
activity. This attractor nonlinearity is necessary to increase the 
signal-to-noise ratio of the fading subthreshold signal for success-
ful memory reactivation9. At the same time, activity-silent memory 
mechanisms may stabilize persistent activity in attractor networks 
(for examples, see refs. 11,16–18). Interestingly, modeling studies have 
argued that the interaction of these mechanisms during the delay 
period would be reflected behaviorally in serial biases11,16, but this 
theoretically appealing hypothesis still lacks experimental support.

Serial biases in spatial working memory denote small but system-
atic shifts of memory reports toward nearby locations memorized 
in the previous trial19–22, which reveal a lingering representation of 
previous memories. Uncleared memory remnants have long been 
viewed as limiting working memory performance (proactive inter-
ference23), but recent proposals suggest that they may be useful to 
inform working memory about the expected statistics in naturalistic 
conditions24 (but see 25), similar to other history biases with longer 
time scales and possibly different neural mechanisms (contraction 
bias26–28). The functional relevance of biases implicates specific roles 
of higher-order brain areas. On the one hand, these areas could sup-
press maladaptive biases to minimize performance degradation29,30. 
On the other hand, they might promote adaptive biases by main-
taining a representation of stimulus history26. Whether association 
areas generate or suppress serial biases in primates is currently 
undefined, and a mechanistic understanding of the generation of 
any type of history biases is still lacking.

Both attractor dynamics20 and activity-silent11,16,31 mechanisms 
have been proposed to carry stimulus-selective information from 
one trial to the next to effect serial biases. However, dependen-
cies of serial biases on inter-trial interval (ITI) durations20–22 
are largely consistent with activity-silent and not activity-based 
mechanisms11,16,31. Here, we sought to specify the interaction of 
activity-based and activity-silent PFC mechanisms in supporting 
serial biases while participants performed a spatial working mem-
ory task that engages attractor dynamics in the PFC6. Furthermore, 
this approach may offer indirect evidence that activity-silent and 
activity-based mechanisms co-occur during the delay period, as 
proposed by computational models (for examples, see refs. 11,16–18). 
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Persistent neuronal spiking has long been considered the mechanism underlying working memory, but recent proposals argue 
for alternative ‘activity-silent’ substrates. Using monkey and human electrophysiology data, we show here that attractor 
dynamics that control neural spiking during mnemonic periods interact with activity-silent mechanisms in the prefrontal cortex 
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mation was not decodable between trials, but remained present in activity-silent traces inferred from spiking synchrony in the 
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scranial magnetic stimulation applied to the human PFC between successive trials enhanced serial biases, thus demonstrating 
the causal role of prefrontal reactivations in determining working-memory behavior.
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Telling these mechanisms apart in the delay period is problematic 
because of their coactivation. By extending the relevant task periods 
to the ITI, we propose a way to disentangle them and to study the 
effect of their interaction on upcoming memories.

We compared the encoding properties of brain activity in the 
delay and ITI periods to identify the mechanistic basis of the mem-
ory trace that spans consecutive trials. We used behavioral and elec-
trophysiological data collected in monkeys and humans: prefrontal 
multiple-unit recordings in monkeys and scalp electroencepha-
lography (EEG) in humans. Between successive persistent activity 
mnemonic codes, we found an activity-silent code in the PFC that 
carried stimulus information through inter-trial periods. In addi-
tion, we found correlational and causal evidence, using transcra-
nial magnetic stimulation (TMS), to indicate that fixation-period 
PFC reactivation from this activity-silent trace enhances attractive 
serial biases. These findings underscore the behavioral relevance 
of the dynamic interplay between attractor and subthreshold net-
work dynamics in the PFC and reconcile these seemingly conflict-
ing mechanisms. Our data suggests that this interplay could be the 
basis of closely associated memory storage processes operating at 
different time scales, thereby possibly serving different behavioral 
purposes.

Results
We trained four rhesus monkeys to perform an oculomotor delayed 
response task. The task consisted of remembering spatial loca-
tions at fixed eccentricity while maintaining fixation during a delay 
period of 3 s (Fig. 1a; Methods). The extinction of the fixation cue 
triggered the monkey to execute a saccade toward the remembered 
location and marked the beginning of a fixed ITI of 3.1 s, lasting 
until the appearance of the stimulus cue of the new trial (Fig. 1b). 
In addition, we tested 35 human participants in variations of the 
task performed by the monkeys (Methods). In all cases, we recorded 
the reported location and computed behavioral errors as angular 
distances to corresponding target locations. Following the methods 
described in previous studies19, we analyzed the dependence of the 
current-trial error on relative previous-trial location. Both monkeys 
and humans showed biased reports relative to previously remem-
bered locations. These biases were attractive for short distances 
between previous-trial and current-trial locations, and repulsive 
for large previous± current distances (Figs. 1a and 2a). Our primary 
goal was to test the hypothesis that activity-silent and persistent 
activity working memory mechanisms interact to produce serial 
dependence effects. To this end, we investigated electrophysiologi-
cal measurements in the ITI, including periods from the response to 
the subsequent fixation period.

Reactivation of previous memory information in the monkey 
dorsolateral PFC before new stimulus presentation. We collected 
single-unit responses from the dorsolateral PFC (dlPFC) of two 
monkeys while they performed the task. A substantial fraction of 
neurons in this area showed tuned persistent delay activity during 
the mnemonic delay period6 (n = 206 out of 822, Methods). These 
specific neurons are part of bump-attractor dynamics that charac-
terize the memory periods of this task6. Based on this evidence, we 
assumed an attractor dynamics mechanism for persistent activity, 
and these terms are used interchangeably to refer to this network 
regime. Based on our hypothesis that an interplay of activity-silent 
and attractor mechanisms support serial biases, we focused our 
analyses on these neurons, and we grouped them in simultaneously 
recorded ensembles for decoding analyses (n = 94 ensembles, size 
range of 1± 6 neurons; Extended Data Fig. 1a).

The firing rates of dlPFC neurons exhibited strong dynamics in 
the ITI compared to the characteristic stable dynamics during mne-
monic delay periods (Fig. 1b). Phasic rate increases at response exe-
cution (Rn ±  1, Fig. 1b) and fixation onset (Fn, Fig. 1b) were hallmarks  
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Fig. 1 | Previous­ trial stimulus code reactivates before the forthcoming 
stimulus. a, General task design (left) and serial bias for four monkeys 
(n!=!11,670 consecutive trial pairs; right). Trials with counter­c lockwise 
previous reports relative to the current stimulus were collapsed into 
clockwise trials (folded errors, Methods). Positive (negative) values 
indicate response attraction (repulsion) toward previous locations 
presented at that relative distance from the current stimulus. Shading 
indicates bootstrapped!±s.e.m. Black horizontal solid bars represent 
P!<!0.05 (one­s ided permutation test). Durations in different experiments 
are separated by vertical bars (monkey | EEG | TMS). b, Averaged, 
normalized firing rate of n!=!206 neurons during the ITI (spike counts of 
300­m s causal square kernel, z­s cored in the interval [ñ4 .5!s, 1.5!s]). Gray 
vertical bars mark the response and stimulus cue periods. c, The decoding 
accuracy of previous­t rial stimulus from n!=!94 independent ensembles, 
computed as the distance from the mean of the decoding accuracy in 
shuffled surrogates, in units of their standard deviation σ (Methods), 
averaged over ensembles with strong (red) and weak (gray) decoding 
in the delay period (Methods). Aligned with anticipatory ramping in late 
fixation (b), the previous­t rial stimulus code reappears specifically in 
ensembles with stronger delay code (Extended Data Fig. 1). Black bars 
mark time points for which a decoding accuracy of 99.5% CI is above 
zero. d, Tuning to previous­t rial stimuli, aligning responses to the preferred 
cue as defined in the delay period, and computed in different trial epochs 
(color­c oded in c; two­s ided bootstrap­t est at preferred location: P!=!0.015, 
CI!=![ñ0 .3, ñ0 .03], Cohenís d!=!ñ0 .17 (cyan); P!=!0.865, CI!=![ñ0 .12, 0.14], 
Cohenís d!=!0.012 (deep blue); P!=!0.025, CI!=![0.024, 0.33], Cohenís  
d!= 0.15 (orange); n!=!206 neurons, shading depicts ±!s.e.m.). In all panels, 
unless stated otherwise, error shading marks bootstrapped 95% CI.
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in these dynamics, but we also noted an increase in the firing rate 
before stimulus presentation (Sn, Fig. 1b), which could reflect the 
anticipation of the upcoming stimulus due to fixed-length fixa-
tion periods. We wondered whether these rate changes were also 
related to dynamic changes in stimulus selectivity. Under the 
attractor-based hypothesis for serial biases32, sustained stimulus 
selectivity would be expected to extend from the delay period of the 
previous trial into the fixation period of the next trial. We measured 
selectivity by training a linear decoder on the spike counts of our 
neuronal ensembles and referenced its accuracy to that obtained by 
chance using a resampling approach (Methods). During the delay 
period, neuronal ensembles carried stimulus information and single 
neurons showed stimulus tuning (Fig. 1c,d, red). After report, the 
memorized location was still decodable from ensemble activity, but 
the tuning curves of single neurons showed a selective suppression 
of responses in their mnemonic preferred locations (Fig. 1c, cyan). 
This could reflect neuronal adaptation mechanisms or saccade  

preparation toward the opposite direction to regain fixation. In the 
middle of the ITI, decoding accuracy was not different from chance 
and neurons were no longer tuned to the previous stimulus (Fig. 
1c,d, deep blue), which suggests that the encoding of the previous 
stimulus had disappeared from neural activity. However, immedi-
ately before the presentation of the new stimulus and aligned with 
anticipatory ramping activity (Fig. 1b), the previous stimulus was 
again decoded and single-neuron tuning reappeared (Fig. 1c,d, 
orange). This reemergent stimulus information is consistent with 
previously-reported spiking selectivity during the ITI32, but we 
show here that there is a period in the ITI in which stimulus infor-
mation cannot be decoded before it reappears at the end of the fixa-
tion period (late fixation). Furthermore, this code in late fixation is 
a reactivation of the representation active in the previous trial delay. 
This is supported by two pieces of evidence. First, information reap-
pearance occurred more strongly in those neuronal ensembles that 
maintained more stimulus information during the delay period 
(Fig. 1c; Extended Data Fig. 1). Second, the converging pattern of 
noise correlations at the end of the delay6 and in late fixation sug-
gested a similar attractor-like network activation in both periods. 
Indeed, when the preceding stimulus appeared between the pre-
ferred locations of two neurons, these PFC neuron pairs exhibited 
negative noise correlations in late fixation (Extended Data Fig. 2). 
These negative noise correlations are a signature of a fixed-shape 
bump that diffuses from the initial stimulus location: as it moves 
closer to the preferred location of one neuron and away from the 
other, the firing rate increases for one neuron and decreases for 
the other6. Negative noise correlations appeared exclusively dur-
ing late fixation, which strongly suggests that a bump is reactivated 
at that specific time point (Extended Data Fig. 2). Taken together, 
these results support that there is a reactivation of memory-period 
representation in the fixation period (reactivation period) follow-
ing a period of absent selective neuronal firing in the dlPFC. This 
reactivation points at a relationship between mechanisms of delay 
memory encoding and mechanisms bridging the ITI to facilitate 
reactivation before the new stimulus.

Previous trial memory information reactivation in the fixation 
period of human EEG traces. In line with the monkey electrophysi-
ology data, we found similar previous-trial traces in human EEG 
data (n = 15). We extracted alpha power from all electrodes and used 
a linear decoder to reconstruct the target location from EEG signals 
in each trial33 (Methods). The target representation was signifi-
cantly sustained during delay and response periods and in the fixa-
tion period of the next trial (Fig. 2b, diagonal axis). Importantly, at 
each time point, this dynamic EEG decoder uses signals originating 
from different cortical regions and could therefore combine tempo-
rally overlapping but spatially distinct representational components 
(for example, mnemonic versus response-related components). We 
therefore trained different linear decoders during the delay period 
(500± 1,000 ms after stimulus onset, ̀delay code' ) and around the time 
of the response (250 ms before to 250 ms after response, ` response 
code' ), and used the respective weights to extract previous-stimulus 
information throughout different periods of the trial (Fig. 2c). The 
delay code was stable during stimulus presentation and delay, but 
disappeared during the ITI, around the time of the response. In con-
trast, the response code did not generalize beyond the time at which 
the decoder was trained (Fig. 2c). We found that the delay code of 
the previous trial reappeared during the fixation period (Fig. 2c,d, 
orange), similarly to what we found in the monkey neurophysiol-
ogy data (Fig. 1c), but slightly earlier in the ITI. In our human data, 
reactivation was possibly triggered by the onset of the fixation dot, 
while reactivation in the monkey PFC could be triggered by a ramp-
ing anticipatory signal in the fixed-duration ITI (Fig. 1b). These 
results provide a confirmatory correspondence with the time course 
of mnemonic decoding in the monkey data, but they also show the 
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Fig. 2 | In human EEG, the delay code also reactivates in the fixation 
period. a, Serial bias for human participants. Shading represents ±s.e.m. 
b, Temporal generalization of previous­s timulus code for all combinations 
of training and testing times from previous­t rial stimulus onset (Sn!ñ !1) and 
response (Rn!ñ !1) to current­ trial fixation (Fn) and stimulus onset (Sn). Solid 
white lines mark the discontinuity of EEG fragments aligned to Sn!ñ !1, Rn!ñ !1 
and Sn. Dashed lines indicate the temporal center of transversal sections 
shown in c. a.u., arbitrary units. c, The decoding of previous stimulus during 
previous­t rial delay (left), response (middle) and current­t rial fixation 
period (right) for decoders trained during previous­t rial delay (black 
line, 0.5!s!ñ !1.!s after Sn!ñ !1, lower dashed line in b) and during previous­t rial 
response (gray line, 0.5­s  window centered on Rn!ñ !1, upper dashed line in 
b). The delay code is stable during the delay period, disappears during the 
response and reappears in current­t rial fixation; see also d. In contrast, 
previous­t rial response­r elated information is dynamic and not present 
in the fixation period. Error shading represents 95% CI. d, De­m eaned 
reconstruction of tuning to the previous stimulus at different epochs for 
the delay decoder, marked in c (two­s ided bootstrap­t est preferred versus 
anti­p referred location: P!<!1!×!10ñ 6, CI!=![0.55, 0.73], Cohenís d!=!3.6 
(red); P!=!0.69, CI!=![ñ0 .22, 0.16], Cohenís d!=!0.10 (blue); P!=!1!×!10ñ 6, 
CI!=![0.17, 0.36], Cohenís d!=!1.35 (orange); shading represents ±s.e.m.). In 
a and b, the black horizontal bars indicate significant deviation from zero 
(bootstrap), P!<!0.05 in a, P!<!0.005 in c (both two­s ided). For all panels, 
n!=!15 independent participants.
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temporal continuity between qualitatively distinct memory and 
response codes. The bidirectional transfer of information between 
memory and response representations in different brain areas could 
provide a bridge between the memory and reactivation periods 
observed in the PFC. Alternatively, response codes may just reflect 
the output motor commands, and mnemonic codes may subsist at a 
subthreshold level in the PFC to allow reactivations. We tested this 
hypothesis with a cross-correlation analysis of PFC units.

Increased cross-correlation suggests a latent trace during the 
ITI. We sought experimental validation for whether activity-silent 
mechanisms in the dlPFC still maintained stimulus information 
during the ITI between consecutive trials. We reasoned that if such 
latent activation (for example, a synaptic trace9) affected a group 
of interconnected neurons, these would be more likely to exceed 
their spiking threshold in synchrony8,34. Following a preferred cue, 
neurons would increase their activity in the delay period and main-
tain latent activity-silent traces in the subsequent ITI that would 
be reflected in enhanced synchrony34, but not enhanced rates. 
Moreover, we deduced that this reasoning was pertinent only to 
effective excitatory interactions (exc); that is, neurons interacting 
through effective inhibition (inh) should instead show a reduced 
probability of coactivation following a possible inhibitory efficacy 
enhancement by preferred stimuli in the previous trial34.

To test this hypothesis, we selected pairs of neurons with simi-
lar selectivity (n = 67 pairs, Methods) so that they had consistent 
activation (high or low firing rate) in the delay period. As per previ-
ous studies35,36, we divided the selected pairs on the basis of their 
whole-trial cross-correlation peak sign in exc and inh interactions 
(Methods). We considered the following two conditions (Fig. 3a; 
Methods): trials in which the previous stimulus was shown close to 
either preferred location (pref; Methods) or far from preferred loca-
tions (anti-pref). Then, we computed a cross-correlation selectivity 
index (CCSI) by subtracting the amplitude of the central peak of the 
jitter-corrected cross-correlation function (coincident spikes within 
20 ms; Methods, similar to ref. 37) for pref and anti-pref trials for 
each neuron pair (Fig. 3b). Our hypothesis predicts positive (nega-
tive) CCSI for exc (inh) pairs in the ITI; that is, higher (lower) spike 
synchrony following preferred stimuli.

The CCSI computed in a period of the ITI where the firing rate 
had ceased to represent the stimulus (activity-silent period, Fig. 
1c,d, deep blue) was positive, which reflects selectivity in neuronal 
synchrony to the previous stimulus for all interactions (Fig. 3c). We 
then investigated changes in CCSI values for exc and inh interactions 
across our two periods of interest: the activity-silent and reactiva-
tion periods (Fig. 1c, deep blue and orange, respectively). We found 
that their reactivation-period CCSI values significantly differed, 
being negative for inh interactions and positive for exc interactions 
(Fig. 3c). Finally, we explored the CCSI dynamics throughout the 
trial (Fig. 3d) and found that with the exception of immediately 
after the previous response, in which neurons showed anti-tuning to 
previous-trial stimulus (Fig. 1c), the CCSI for exc pairs was always 
positive, indicating stronger central-peak cross-correlation when 
the previous stimulus was preferred (Fig. 3d, orange). Conversely, 
for inh interactions, the CCSI was negative (stronger inh interac-
tions following a preferred stimulus) only during reactivation and 
the previous-trial delay period (Fig. 3d, cyan), the periods in which 
PFC firing rates showed stimulus selectivity (Fig. 1c). This pattern is 
consistent with the latent memory mechanism residing in excitatory 
neurons and only being reflected in inhibitory interactions through 
collective engagement in bump-attractor dynamics during the delay 
period and at the time of reactivation. Importantly, this analysis 
was done during a period without firing-rate selectivity (Fig. 3f), 
thus free of a potential confound from firing rates (see Extended 
Data Fig. 3 for the same analysis performed during the delay period, 
where that caveat cannot be ignored.)

This proves the existence of a latent trace of the stimulus in 
the PFC during the ITI, but it could still be reflecting selective  
subthreshold inputs from a different area that maintains tuned  
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confound between the rate selectivity and the CCSI. Error bars represent 
bootstrapped 95% CI (b and e) or s.e.m (c and d).
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persistent activity instead of selective local modulations in the PFC. 
To rule out this possibility and to strengthen the idea that stimu-
lus information is directly transferred from an activity-based to an 
activity-silent code in the PFC, we tested whether the selectivity 
of exc interactions during the activity-silent period depended on 
the spiking activity of corresponding neurons in the previous delay 
period. Assuming a neuron-specific activity-dependent mecha-
nism supporting the activity-silent code in the ITI, we predicted 
that the magnitude of the cross-correlation central peak in the 
activity-silent period would correlate on a trial-by-trial basis with 
the mean spike count recorded in the preceding delay period and 
specifically for pref (and not for anti-pref) trials (Methods). This 
prediction was confirmed in the experimental data (Fig. 3e). Thus, 
this cross-correlation analysis supports the hypothesis that previ-
ous, currently irrelevant, stimulus information remains in prefron-
tal circuits in latent states, undetected by linear decoders that do not 
take spike timing into consideration (Figs. 1c and 3f).

Bump reactivation as a mechanism for stimulus information 
reappearance. Based on our electrophysiology results and on prior 
modeling studies9, we formulated the bump-reactivation hypothesis 
to explain our data. We hypothesized that information held in mem-
ory as an activity bump during the delay period of the previous trial6 
would be imprinted in neuronal synapses as a latent activity-silent 
trace during the ITI. This latent bump could be reactivated by the 
nonspecific anticipatory signal seen in the mean firing activity in 
the PFC (Fig. 1b) or by anticipatory mechanisms following an exter-
nal cue that predicts stimulus presentation, such as the onset of a 
fixation dot (Fig. 2c). In fact, in a separate EEG experiment in which 
fixation lengths were jittered so as to make stimulus onsets unpre-
dictable, we could not find any delay code reactivation (Extended 
Data Fig. 4).

To test the bump-reactivation hypothesis, we built a 
bump-attractor network model of spiking excitatory and inhibi-
tory neurons. Based on our electrophysiology findings, short-term 
plasticity (STP) dynamics were included only in excitatory synapses 
(Methods). In each trial, stimulus information was maintained in 
activity bumps during the delay period by virtue of recurrent con-
nectivity between neurons selective to the corresponding stimulus. 
During the ITI period, model neurons did not exhibit detectable 
tuning to the previous-trial stimulus (Fig. 4a, black, and Fig. 4b, 
deep blue)16,31. However, the synapses of neurons that had partici-
pated in memory maintenance in the previous delay period were 
facilitated due to STP (Fig. 4a, deep blue). Parallel to our analysis 
presented in Fig. 3, this was reflected in the central peak of the 
ITI cross-correlation for pairs of excitatory model neurons, which 
maintained selectivity to the previous stimulus (Fig. 4a) even in 
the absence of single-neuron firing-rate selectivity (Fig. 4a, deep 
blue). We found that single-neuron tuning could be recovered from 
the hidden synaptic trace using a nonspecific input (drive) to the 
entire population (Fig. 4a,c; Methods, see also refs. 9,38). Our bio-
logically constrained computational model was therefore an explicit 
implementation of the bump-reactivation hypothesis that we  
had formulated.

The impact of bump reactivation on serial biases. We next used 
our computational model to derive behavioral and physiological 
predictions to test in our data, in particular in relation to serial 
biases. To simulate serial biases with our computational model, we 
ran pairs of consecutive trials with varying distance between the 
two stimuli presented in each simulation. We used the final loca-
tion of the bump in the second trial (current-trial memory) as the 
` behavioral'  output of the model in that trial. We were able to model 
the profile of serial biases that were experimentally observed (Fig. 
4d; Extended Data Fig. 5), similar to previous models16,31. To test 
the impact of bump reactivation on serial biases, we compared the 

behavioral output of simulations with and without drive before the 
second trial stimulus (Methods). Bump reactivation resulted in 
stronger attractive biases for similar successive stimuli, and in repul-
sive biases for more dissimilar successive stimuli (Fig. 4d, cyan). We 
found that tuned intracortical inhibition39,40 was necessary for this 
emergence of repulsive biases after bump reactivation (Extended 
Data. Fig. 5; see refs. 31,41 for an alternative mechanism). Finally, we 
tested the dependence of this behavioral effect on the strength of 
the nonspecific drive. A very short but strong impulse to the entire 
network during the ITI quickly saturated all the synaptic facilitation 
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variables, effectively removing all serial biases in the output of the 
network (Fig. 4d, deep blue). Thus, in this model, bump reactivation 
nonlinearly affects serial biases as the reactivation strength is varied. 
In summary, our model reproduced the behavioral and neurophysi-
ological findings described in Figs. 1± 3 and derived predictions 
concerning memory reactivations from silent traces that we then 
tested in the data.

Previous stimulus reactivation increases serial biases. The model 
predicts that higher reactivation of previous memories in the fixa-
tion period should be associated with stronger serial biases (Fig. 
4d). We tested this prediction in our neural recordings from mon-
key PFC and in EEG recordings from the human scalp.

Monkey PFC. We first classified each trial on the basis of 
leave-one-out decoding of the previous stimulus trained and tested 
on activity from two different time windows during fixation: during 
a period with no stimulus information (activity-silent period; Fig. 1, 
deep blue) and at the time of reactivation (Fig. 1, orange). For each 
of these two windows, we separated high-decoding trials (first quar-
tile) from low-decoding trials (all other trials) and computed bias 
curves separately. We found that serial biases were indistinguish-
able in the activity-silent period (Fig. 5a), but they were stronger 
for high-decoding than for low-decoding trials at the time of bump 
reactivation (Fig. 5b). This follows the prediction of our computa-
tional model, and it confirms the behavioral relevance of the bump 
reactivation before stimulus onset. This result was not dependent on 
a singular selection of trial separations, because for different pro-
portions of high-decoding and low-decoding trials, the serial bias 
strengths (Methods) changed smoothly and remained consistent 
with the reported result (Extended Data Fig. 6). We then repeated 
the same analysis at different time points of the ITI. A significant 
difference in serial bias strength (Methods) emerged only when tri-
als were classified as low-decoding versus high-decoding in the reac-
tivation period (Figs. 1c and 5c, orange), and serial biases remained 
virtually indistinguishable at all other time points (Fig. 5c).

Human EEG. Analogous to the analysis of the monkey data, we 
grouped trials on the basis of their leave-one-out decoding accuracy 
of the previous stimulus (Methods). We separated high-decoding 
and low-decoding trials at two different time points: at the time of 
reactivation (Figs. 2 and 5f, orange) and at a fixation-period time 
point without stimulus information (activity-silent; Fig. 5c, black). 
Consistent with the monkey data and the prediction from our 
model, we found a stronger serial bias for high-decoding than for 
low-decoding trials for the reactivation period (Fig. 5e), but not for 
the activity-silent period (Fig. 5d), during which previous memory 
content was not decodable (Fig. 2c). The analysis was repeated for 
all other time points during the fixation period (Fig. 5f). Indeed, 
behavior exclusively depended on decoding accuracy at the time of 
delay code reactivation (Fig. 2, orange). Taken together, these results 
support the hypothesis that previous-trial memory reactivation 
before stimulus onset controls serial biases.

TMS-induced reactivations modulate serial biases. As a causal 
validation of the influence of pre-stimulus PFC reactivation on 
serial biases, we designed a TMS study. This is a relevant experiment 
because memory-dependent changes in human EEG alpha power 
cannot be unequivocally ascribed to a specific brain region, which 
limits the correspondence of our EEG and monkey dlPFC data. In 
particular, representations in larger and more organized occipi-
tal cortices might strongly contribute to visual EEG signals (for 
example, see ref. 33), but could yet be driven by top-down projec-
tions from association cortices42. Inspired by a previous study14 that 
reported reactivation of latent memories using TMS, we causally 
tested the role of the dlPFC in serial biases by applying single-pulse 

TMS during the fixation period. We had two control conditions 
to test our hypotheses: (1) we targeted the TMS coil at the dlPFC 
and the vertex in interleaved blocks, and (2) we randomly chose 
the TMS intensity in each trial (sham: 0%, weak-TMS: 70%, and 
strong-TMS: 130% of the resting motor threshold (RMT) of each 
participant; Methods). We found that TMS modulated serial biases 
when targeted at the dlPFC but not at the vertex (Fig. 6). Moreover, 
our computational model predicted a nonlinear dependence with 
stimulation strength (Fig. 4d), which was supported by the TMS 
data (Fig. 6b). Interestingly, the behavioral impact of PFC TMS stim-
ulation declined throughout the session, as if participants became 
desensitized to the TMS pulse (Extended Data Fig. 7). Importantly, 
we show combined results from two separate experiments of n = 10 
participants each, one being a preregistered replication (Methods; 
Extended Data Figs. 8 and 9). These results provide causal evidence 
for the involvement of the PFC in the serial bias machinery during 
the ITI. Furthermore, we show that TMS affects serial biases in a 
nonlinear manner, as predicted by model simulations that imple-
ment the bump-reactivation hypothesis via the interplay of bump 
attractor and activity-silent mechanisms.

Discussion
By studying the neural basis of serial biases, we showed how the inter-
play of bump-attractor dynamics and activity-silent mechanisms  
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in the PFC maintains and eventually reactivates information about 
previous stimuli in spatial working memory. In delayed-response 
tasks, prefrontal tuned persistent activity consistent with 
bump-attractor dynamics characterizes the delay period and cor-
relates with behavioral precision6,43. We have now seen that this sus-
tained activation disappears from the prefrontal network between 
trials, but is reactivated before the new trial (Figs. 1 and 2) and 
enhances behavioral serial biases (Figs. 5 and 6). This reactivation 
is directly linked to previous-trial activity: it emerged specifically in 
those neural ensembles that showed strongest persistent tuning in 
the delay period (Fig. 1c; Extended Data Fig. 1), it was decoded from 
human EEG data with decoders trained in the delay period (Fig. 
2) and it exhibited the fingerprints of bump attractors as evaluated 
using pairwise correlations (Extended Data Fig. 2). Activity-silent 
mechanisms in the PFC bridge disconnected periods of persistent 
activity, carrying trial-specific information from one trial to the 
next (Fig. 3). Importantly, this latent tuning was directly associ-
ated with trial-by-trial firing rates in the preceding delay period 
(Fig. 3e), thus establishing a coupling between activity-based and 
activity-silent mechanisms in the PFC. Taken together, our results 
are consistent with the view that attractor-based and activity-silent 
mechanisms are jointly represented in the prefrontal circuit and 
that their tight interplay influences representations in spatial work-
ing memory. We specified this in a computational network model, 
whereby delay-period attractor dynamics imprint activity-silent 
mechanisms, which then retain information between trials and 
allow reactivations to recapitulate attractor states (Fig. 4).

Our data indicate that nonspecific PFC stimulation can revive 
subthreshold information, thus supporting the ideas put forward 
in computational models9 and in previous neuroimaging and EEG 
studies14,44,45. Importantly, we obtained explicit causal evidence 
supporting the role of ITI reactivations in enhancing serial biases. 
Similarly, recent causal evidence obtained in rodents26 showed the 
role of parietal activations in generating history-dependent biases. 
However, the absence of selective mnemonic delay activity in rat 
parietal neurons26 suggests that parietal ITI representations do not 

emerge from trace reactivations. A directed mechanistic investiga-
tion of the rat posterior parietal cortex in this task, similar to our 
efforts here, would be necessary to clarify the mechanisms and ori-
gin of history biases, and potential differences between the genera-
tion of contraction and serial biases in rodents and primates. More 
in line with our reasoning, human TMS studies found behavioral 
effects of memory reactivations when applied in the delay period, but 
only when memories were still behaviorally relevant14. In contrast, 
we show here that fixation-period TMS enhanced the behavioral 
influence of previous, already irrelevant memories. Reactivations 
may therefore not depend on behavioral relevance but rather on the 
decaying dynamics of activity-silent mechanisms; a more advanced 
decay of irrelevant memory traces may limit memory reactivations 
in ref. 14. Reactivations also offer alternative explanations to TMS 
effects in working memory that have previously been interpreted on 
the basis of network disruptions46.

Our data support the idea that activity-silent and attractor-based 
mechanisms are not orthogonal, alternative mechanisms, but that 
they are interdependent mechanisms colocalized in the PFC. In turn, 
their different timescales may associate them preferentially with 
different types of memory processes. During active maintenance 
of working memory, rapid persistent attractor-based activity may 
encode memory, with slower activity-silent mechanisms providing a 
supporting, stabilizing role11,16,17. Note that although direct evidence 
of this interplay in the delay period is problematic (Extended Data 
Fig. 3), our approach of separately assessing delay period and ITI, 
and their trial-by-trial correlation, indirectly supports this interplay 
and may be the most direct evidence that can be accessed extra-
cellularly without resorting to detailed intracellular measurements 
in awake monkeys. After the deactivation of attractor-based active 
maintenance in the ITI, slowly decaying activity-silent maintenance 
may underlie secondary, possibly involuntary memory traces, lead-
ing to serial biases in upcoming trials. Note that previous studies 
have also proposed a central role for activity-silent maintenance for 
an additional, intermediate type of memory: unattended, behavior-
ally relevant memories14,44. It was hypothesized that by resorting to 
different mechanisms, unattended memories may be reserved and 
protected while processing attended memories. Although our data 
do not address the mechanism of unattended memories, in our 
proposed framework, the close interplay between attractor-based 
and activity-silent mechanisms does not allow unattended memo-
ries (activity-silent memories) to be protected from intervening 
attended memories (attractor-based). This yields the prediction that 
serial-bias-like patterns of interference39,40 between unattended and 
attended memories should be observed in these experiments14,44.

Our results have implications for the functional interpretation 
of serial biases and their relation with the interplay of prefrontal 
mnemonic mechanisms. First, enhanced serial biases after reacti-
vating latent traces from earlier memories are consistent with the 
view that biases are the by-product of memory-supporting pro-
cesses. As previous computational studies have shown, long-lasting 
cellular or synaptic mechanisms can enhance the stability of work-
ing memory retention (for examples, see refs. 11,16± 18), but with the 
cost of across-trial interference of memories11,16. Along these lines, 
a recently found reduction in serial biases in patients with schizo-
phrenia41, anti-NMDA receptor encephalitis41 or autism28 may 
reflect a reduced interplay of memory-supporting mechanisms. 
Second, we see an active role of the PFC in generating serial biases, 
rather than suppressing them as proposed by the proactive interfer-
ence literature29,30. This discrepancy could be resolved if the role of 
PFC was two-sided: (1) the PFC could generate biases either as a 
by-product of stable memory retention11,16 or actively, in circum-
stances in which past memory traces are adaptive for behavior24; 
alternatively, (2) strong PFC activation would suppress maladap-
tive memory remnants in situations where biases are particularly 
detrimental to behavioral performance. This dual PFC function is 
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supported in our modeling and TMS data by the contrasting effect 
of weak and strong PFC activation on serial biases.

Our TMS experiment clarified our EEG results by demonstrat-
ing the role that the PFC plays in serial biases. Because we did not 
concurrently acquire EEG data during the TMS study, we could not 
directly measure the neural reactivation induced by the TMS pulse. 
However, prior work has shown the reactivation of EEG memory 
representations with TMS14, albeit in different conditions (pulses 
in the memory period targeted at parietal and occipital regions). 
Intriguingly, serial biases for trials without TMS stimulation in 
PFC-stimulation blocks were repulsive (Fig. 6b). We speculate that 
this was due to suppressive long-lasting physiological effects in the 
PFC that carried over from previous TMS-stimulated trials in the 
block47 (see Extended Data Fig. 10 for a phenomenological model 
of this hypothesis). Future work involving more fine-grained TMS 
intensities and carefully controlled block designs will be necessary 
to further clarify these results.

We proposed a computational model that can parsimoniously 
explain our data using STP in the synapses of a recurrent net-
work. STP has also been used in previous computational models 
of interacting activity-based and activity-silent dynamics9,10,13 and 
of serial biases16,31. Beyond previous modeling efforts, we explored 
the mechanistic requirements of code reactivations before a new 
trial, and we derived predictions whose validation conferred plau-
sibility to the model. Our findings do not unequivocally identify 
this mechanism and we could have chosen another mechanism 
with a long time constant to computationally implement our 
hypothesis (for example, calcium-activated depolarizing currents17, 
depolarization-induced suppression of inhibition11 or short-term 
potentiation48). Also, synaptic plasticity mechanisms linked to feed-
forward connections into the PFC38 could conceivably play a role. 
Still, several lines of evidence support the involvement of STP in 
prefrontal function. First, there is explicit evidence for enhanced 
short-term facilitation and augmentation among PFC neurons in 
in vitro studies49,50. Second, extracellular recordings in behaving 
animals cannot directly probe activity-silent mechanisms, but indi-
rect evidence for synaptic plasticity has been gathered from pre-
frontal activity correlations of rodents engaged in working memory 
tasks35. Our study also follows this approach to seek evidence for 
activity-silent stimulus encoding, but we applied it specifically at 
time periods without firing-rate codes for task stimuli, thus unam-
biguously decoupling activity-silent from activity-based selectivity 
(Fig. 3; Extended Data Fig. 3).

In summary, our data show that subthreshold traces of recent 
memories remain imprinted in PFC circuits and bias behavioral 
output in working memory in particular through network reactiva-
tions of recent experiences. Our findings suggest that the dynamic 
interplay between attractor and subthreshold network dynamics in 
the PFC supports closely associated memory storage processes: from 
effortful memory to occasional reactivation of fading experiences.
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Methods
Behavioral task and recordings. Monkey behavioral task and recordings. Four 
adult (>6 years old), male rhesus monkeys (Macaca mulatta) were trained in an 
oculomotor delayed response task requiring them to fixate, view a peripheral visual 
stimulus on a screen at a distance of 50 cm and make a saccadic eye movement to 
its location after a delay period. During execution of the task, neurophysiological 
recordings were obtained from the dlPFC. Detailed methods of the behavioral task, 
training, surgeries and recordings, as well as descriptions of neuronal responses 
in the task, have been previously published6,51–54 and are only summarized briefly 
here. Visual stimuli were 1° squares, flashed for 500 ms at an eccentricity of either 
12° or 14°, indicated as degrees of visual angle. Stimuli were randomly presented 
at one out of eight possible locations around the fixation point. A delay period 
lasting 3 s followed the presentation of the stimulus, at the end of which the 
fixation point turned off and a saccade terminating within 5° from the location of 
the remembered stimulus was reinforced with a liquid reward (5° corresponds to 
about 20° of arc on the circle of possible cues). Although fixation was maintained 
through cue and delay periods, we denote the fixation period as the interval 
between fixation onset and cue onset, when the only behavior expected was 
fixation (fixation period, Fig. 1b). A fixed ITI of 3.1 s elapsed between fixation cue 
extinction and the onset of the cue in the next trial (ITI, Fig. 1b). Eye position was 
monitored using a scleral eye coil system in two monkeys and an ISCAN camera 
in the other two. From two of those monkeys, we collected single-unit responses 
from the dlPFC using tungsten electrodes of 1–4 MΩ impedance at 1 kHz while 
they were performing the task51. Simultaneous recordings were obtained from 
arrays of 2–4 microelectrodes spaced 0.2–1 mm apart. A substantial fraction of 
neurons in this area showed tuned persistent delay activity during the mnemonic 
delay period of the task (n = 206 out of 822 neurons6,51–54). For decoding analyses, 
we grouped those neurons in simultaneously recorded ensembles (total of 
n = 94 neural ensembles, 1–6 neurons per ensemble, Extended Data Fig. 1a). All 
experiments were conducted in accordance with the guidelines set forth by the 
US National Institutes of Health, as reviewed and approved by the Yale University 
Institutional Animal Care and Use Committee, and by the Wake Forest University 
Institutional Animal Care and Use Committee. Data collection and analyses were 
not performed blinded to the conditions of the experiments. No statistical methods 
were used to predetermine sample sizes, and we followed the customary practice of 
testing n = 2 monkeys for electrophysiology data and n = 4 monkeys for behavioral 
data. We note that the electrophysiology data were previously acquired and have 
been used in other publications6,51–56.

Human participants and behavioral task. Thirty-five neurologically and 
psychologically healthy volunteers with normal or corrected vision (EEG 
experiment: n = 15 (4 male), 21.27 ± 4.86 years (mean ± s.d.); two additional 
participants were tested, but aborted the EEG experiment with insufficient 
trials; TMS experiments: n = 20 (6 male), 29.86 years ± 9.55 years (mean ± s.d.); 
one additional participant was excluded before their MRI scan due to health 
concerns) from the Barcelona area provided written informed consent and were 
monetarily compensated for their participation, as reviewed and approved by 
the Research Ethics Committee of the Hospital Clínic de Barcelona. During 
both the EEG and TMS experiments, each participant performed two sessions 
lasting approximately 1.5 h. To perform behavioral and EEG analyses, we 
concatenated the two sessions for each participant. Stimuli were presented on a 
17ʺ HP ProBook viewed at a distance of 65 cm, and we used Psychopy (v.1.82.01) 
running on Python 2.7. The TMS study consisted of an initial experiment with 
ten participants and a preregistered replication experiment (https://osf.io/rguzn/) 
with ten more participants (Extended Data Figs. 7–9). For all three studies (one 
EEG and two TMS experiments), we recruited independent participant pools. 
For the fully randomized within-subjects design of our EEG task, condition-blind 
data collection and analyses were not a critical issue. In the TMS study, the 
experimenter could not be blinded to the location of the coil. No statistical 
methods were used to predetermine sample sizes, but our sample sizes were similar 
to those reported in relevant previous publications14,33,46.

In each 1.5-h EEG session, participants completed 12 blocks of 48 trials 
(except for one participant, who completed 12 blocks in one session and 9 blocks 
in the second session). Each trial began with the presentation of a central black 
fixation dot (0.5 × 0.5 cm) on a gray background. After 1.1 s of fixation, a single 
colored circle (stimulus, diameter of 1.4 cm) appeared for 0.25 s at any of 360 
circular locations at a fixed radius of 4.5 cm, randomly sampled from a uniform 
distribution. In 66.67% of trials (a total of 768 trials per participant), the stimulus 
was followed by a 1-s delay in which only the fixation dot remained visible. In the 
remaining trials, the delay duration was either 3 s (16.67% of trials, 192 trials per 
participant) or 0 s (16.67% of trials, 192 trials per participant). Trials with 0-s delay 
were excluded from the analyses in this study. The change in the fixation dot color 
(from black to the stimulus color) instructed participants to respond (response 
probe). Participants responded by making a mouse click at the remembered 
location. A transparent circle with a white border indicated the radial distance of 
the stimulus, so the participant was only asked to remember its angular location. 
After the response was given, the cursor had to be moved back to the fixation 
dot to self-initiate a new trial. The total length of the ITI, defined as the time 
between response probe and the next stimulus onset, was around 2.72 s (median, 

95% confidence intervals (CIs) = [2.11 s, 4.16 s]). Participants were instructed to 
maintain fixation during pre-stimulus fixation, stimulus presentation and delay, 
and were free to move their eyes during the response and when returning the 
cursor to the fixation dot. Colors (one out of six colors with equal luminance) were 
randomly chosen with an equal probability for each trial.

Stimuli and the trial structure in the TMS task were similar to the EEG task, 
except for the fixation period duration (0.6 s), screen background (white), stimulus 
color (black) and response probe color (red). At the end of the fixation period 
(16.7 ms before stimulus onset), a single TMS pulse was applied in half of the vertex 
trials (TMS or sham trials, randomly interleaved) and in two-thirds of prefrontal 
trials (weak or strong TMS or sham trials, randomly interleaved). See TMS details 
below. Only delays of 1 s were used in this experiment. Participants completed 4 
blocks of 90 (vertex) and 4 blocks of 130 (PFC) trials within each session. In the 
first TMS study, these eight blocks were randomly shuffled for each session. In the 
replication TMS study, we successively alternated vertex and PFC blocks within 
each session, and the two sessions of a given participant started alternately with 
each area in a counterbalanced design.

EEG recordings and preprocessing. We recorded EEG data from 43 electrodes 
attached directly to the scalp. The electrodes were located at the following modified 
combinatorial nomenclature sites: Fp1, Fpz, Fp2, AF7, AFz, AF8, F7, F3, Fz, F4, 
F8, FT7, FC3, FCz, FC4, FT8, A1, T7, C5, C3, Cz, C4, C6, T8, A2, TP7, CP3, CPz, 
CP4, TP8, P7, P3, Pz, P4, P8, PO7, PO3, POz, PO4, PO8, O1, Oz and O2. Sites 
were referenced to an average of mastoids A1 and A2 and re-referenced offline to 
an average of all electrodes. We further recorded horizontal electrooculography 
data from both eyes, vertical electrooculography data from an electrode placed 
below the left eye and electrocardiography data to detect cardiac artifacts. We 
used a Brainbox EEG-1166 EEG amplifier with a 0.017–100 Hz bandpass filter and 
digitized the signal at 512 Hz using Deltamed Coherence software (v.5.1).

EEG data were preprocessed using Fieldtrip (v.20171231) in Matlab R2017b 
and R2019a. We excluded outlier trials in which variance or kurtosis across 
samples exceeded four standard deviations from mean variance or kurtosis 
over trials, respectively. To reduce artifacts in the remaining data, we ran an 
independent component analysis on the trial-segmented data and corrected the 
signal for blinks, eye movements and electrocardiogram signals, as identified by 
visual inspection of all components. Data were Hilbert-transformed (using the 
FieldTrip function ft_freqanalysis.m) to extract frequencies in the alpha band 
(8–12 Hz), and total power was calculated as the squared complex magnitude of the 
signal. Finally, we excluded trials in which log-normal alpha power at any electrode 
exceeded the time-resolved trial average of log-normal alpha power by more than 
four standard deviations, and trials in which the time-averaged variance across 
electrodes exceeded the mean variance over trials by more than four standard 
deviations (to increase the stability of trial-wise decoding predictions for different 
randomly chosen training sets). In total, we rejected an average of 3.95 ± 1.07% 
(mean ± s.d.) of trials per participant. Excluding rejected trials and trials with 
0-s delay, we used 914.33 ± 28.94 trials per participant. To concatenate data from 
the two sessions for the same participant, we normalized the alpha power of each 
session for each electrode separately.

TMS study. Stimulation was performed in the TMS study using a Magstim Rapid 2  
machine with a 70-mm figure-of-eight coil. TMS target points were located using  
a BrainSight navigated brain stimulation system that allowed coordination of  
the coil position based on the structural MRI scan of each participant. A region  
of interest in the right dlPFC (MNI152 coordinates x = 40, y = 34, z = 16) was  
defined using a NeuroSynth57 term-based meta-analysis of 53 functional MRI 
studies associated with the key phrase ‘spatial working memory’ (Supplementary 
Fig. 1 and Supplementary Data). This mask was transformed into the structural 
MRI space of each participant. Vertex target points were defined using the 10–20  
measurement system. Stimulator intensity, coil position and coil orientation were 
held constant for each participant for the duration of each session. To mask the 
sound of TMS coil discharge, we had participants listen to white noise through 
earphones for the duration of the session. White noise volume was selected 
based on the threshold of the participant for detecting a TMS click using the 
staircase method (two up, one down). Stimulation intensity was determined by 
the individually defined RMT. We applied two different TMS intensities at 70% 
RMT (weak-TMS, 24.5–41.5% (min–max) of stimulator output) and 130% RMT 
(strong-TMS, 45.5–76.5% of stimulator output) depending on the trial (see main 
text). To reduce the number of trials per session, we applied strong-TMS at the 
vertex in the original study, but weak-TMS for the replication study (preregistered 
at https://osf.io/rguzn/; Extended Data Figs. 9 and 10). The stimulation parameters 
were in accordance with published TMS guidelines58. In a post-experiment 
debriefing session, we collected information about the subjective experience of  
the participants. Many participants (13 out of 20) reported facial muscle twitching 
in the dlPFC blocks. This is an unlikely explanation for the effects observed  
in Fig. 6 because (1) twitching is expected to increase with TMS intensity, but we 
instead observed a nonlinear dependency in our effect (Fig. 6b), and  
(2) behavioral performance in our task as measured by the precision of the 
responses was not modulated by the TMS intensity in the dlPFC blocks (linear 
mixed model: θ2e ! intensity þ ð1jsubjectÞ

I
, P > 0.5), which suggests that our 
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reported intensity-dependent effect (Fig. 6b) was not the result of a general 
behavioral impairment caused by facial twitching.

Serial bias analysis. Human study. For each trial, we measured the response 
error (θe

I
) as the angular distance between the angle of the presented stimulus and 

the angle of the response. To exclude responses produced by guessing or motor 
imprecision, we only analyzed responses within an angular distance of 1 radian and 
a radial distance of 2.25 cm from the stimulus. Furthermore, we excluded trials in 
which the time of response initiation exceeded 3 s, and trials for which the time 
between the response probe of the previous trial and the stimulus presentation of 
the current trial exceeded 5 s. On average, 2.99 ± 4.51% (mean ± s.d.) of trials per 
participant were rejected.

We measured serial biases as the average error in the current trial as a function 
of the circular distance between the target locations of the previous and the current 
trial (θd

I
) in sliding windows with size π=3

I
 and in steps of π=20

I
 radians, and steps 

of π/100 radians for Fig. 2a (note that for easier interpretability, all figures depict 
values in angular degrees). To increase power and correct for global response 
biases, we calculated a ‘folded’ version of serial biases as follows25. We multiplied 
trial-wise errors by the sign of θd

I
: θ0e ¼ θe ´ signðθdÞ
I

, and used absolute values 
of θd

I
. Positive mean folded errors should be interpreted as attraction toward the 

previous stimulus and negative mean folded errors as repulsion away from the 
previous location. For a scalar estimate of differences in serial bias curves (Fig. 5f), 
we averaged folded errors for close θd distances (between 0 and π=2

I
 radians).

Monkey study. In contrast to the human study, the stimulus distribution was 
discrete for all the monkey experiments. On each trial, the subject was cued to one 
of eight possible cue locations equidistant on a circle. This restricted the minimal 
angular distance between cues in two consecutive trials to be π=4

I
 radians. To 

obtain a finer resolution to calculate serial biases, we capitalized on the response 
variability on each trial: we computed θd

I
 as the distance between the stimulus of 

the current trial and the response of the previous trial (instead of the stimulus of 
the previous trial). Similar methods to the human study were used, except for Fig. 1a,  
where we used smaller sliding window sizes (π=10

I
 in steps of π=100

I
 radians), 

which was essential to capture the thinner attractive serial bias profile in monkeys 
(Fig. 1a). Specific differences in our monkey and human serial bias curves (Figs. 1a 
and 2a) may be due to the discrete stimulus distribution (eight possible locations) 
that we used for monkeys, in contrast to the continuous distribution used in our 
human experiments. Indeed, studies with larger samples and continuous stimulus 
distributions have reported behavioral biases in monkeys more consistent with 
the human literature20,32. For all our serial bias curves, x axis coordinates mark the 
central value of the corresponding sliding window.

Statistical methods. Data were analyzed using custom scripts in Python 2.7 
(monkey and TMS data) and in Python 3.7.4 (human EEG data). Details of 
statistical methods are tabulated in the Nature Research Reporting Summary 
available online. Unless stated otherwise, all hypothesis tests were two-tailed 
(permutation tests or bootstrap hypothesis test, n = 106) and CI are at [2.5, 97.5] 
percentiles of a bootstrapped distribution. Using bootstrap distributions, we avoid 
assuming normality for our statistical tests. One exception was the linear model 
used for TMS data analyses, in which normality was assumed. Supplementary Fig. 2  
shows the distribution of residuals of this model and the corresponding qqplot. 
There was a significant deviation from normality in extreme values. This did not 
compromise our statistical inference because of the large sample size (n = 18,299 
trials)59 and because the interaction of interest was confirmed by model-free 
analyses (Fig. 6; Extended Data Figs. 7–9).

To test the effect of TMS on serial biases, we fit a linear mixed-effects model 
using the R function lme60. In particular, we modeled trial-wise behavioral errors 
θe
I

 as a linear model with interaction terms for coil location (PFC versus vertex), 
TMS intensity (strong-TMS, sham and weak-TMS) and the sine of θd

I
 (prev-curr), 

which approximates the expected dependency of θe on θd
I

 in the presence of 
serial biases (θe / sinðθdÞ

I
). We incorporated the nonlinear dependency of serial 

bias on stimulation intensity that our model simulations predicted by using –1, 
0 and 1 for strong-TMS, sham and weak-TMS, respectively. In one model, we 
used instead the nominal percent of RMT TMS intensity used (70, 0 and 130, 
respectively) for comparison (Fig. 6b). We accounted for subject-by-subject 
variability by including random-effect intercepts and random-effect 
coefficients of prev-curr. The full, three-way interaction model was as follows: 
θe ! coil location ´ intensity ´ prev-currþ ð1þ prev-currjsubjectÞ
I

Decoding stimulus information. Monkeys. Population decoder. For each recorded 
ensemble, we decoded stimulus θj in trial j by modeling it as a linear combination 
of the spike counts n ij

I
 (i ¼ 1:::k
I

) of k simultaneously recorded neurons, computed 
in sliding windows of 0.5 s and steps of 0.1 s during that trial (in all decoding time 
courses depicted in figures (monkeys and humans), time (x axis) coordinates mark 
the central value of the corresponding sliding window):

cos θj
! "

! 1þ
Xk

i

βinij and sin θj
! "

! 1þ
Xk

i

ωinij

For each set of neurons, we trained two sets of weights fβig
I

 and fωig
I

 on 80% 
of randomly selected trials and tested in the remaining trials. We applied Monte–
Carlo cross-validation with 50 random splits to obtain angle estimates θ̂j. We 
obtained a measure of error (err) by averaging across splits the mean absolute error 
( θ̂j ! θj
!! !!
I

) in each split.

Accuracy of ensembles: distance from shuffle. To establish the significance of 
decoding accuracy (z), we compared the decoding error (err) for each ensemble to 
the distribution of decoding errors in 1,000 shuffled stimulus sequences (errs). By 
shuffling the list of stimuli presented in the particular recording of each ensemble, 
we maintained the characteristics of the distribution (for example, unbalanced 
distribution of stimuli), but effectively destroyed correlations between stimuli and 
neural activity.

z ¼ " err"meanðerrsÞ
s:d:ðerrsÞ

In Fig. 1c and Extended Data Fig. 1b, we separately tested ensembles that had 
the strongest and weakest decoding accuracy in the delay period by obtaining z 
from spike counts in the delay period and classifying the ensembles based on z: 
ensembles within the top tertile (high-decoding delay ensembles) and those in the 
bottom tertile (low-decoding delay ensembles).

Accuracy of single trials: leave-one-out decoder. To measure stimulus information 
on a trial-by-trial basis, we used leave-one-out cross-validation (Fig. 5a–c). We 
regressed the βi

I
 and ωi

I
 weights in all trials, except the one left out for testing. For 

these analyses we computed spike counts in windows of 1 s in steps of 50 ms.

Humans. Linear decoder. EEG alpha power is known to decrease in occipital sites 
contralateral to attended locations and for locations being actively maintained 
in working memory33,61–63. We used this feature to decode the angular position 
of the stimulus from the distribution of alpha power over all 43 electrodes. We 
trained the decoder on the stimulus label of the previous trial and decoded this 
information throughout the previous and current trial. Trial-wise alpha power 
for each electrode was modeled as a linear combination of a set of regressors 
representing the stimulus location in the corresponding trial, U ¼ WM

I
, where U 

is a J ´K
I

 matrix of alpha power measured at electrode j in trial k, M is the N ´K
I

 
design matrix of values for regressor n in trial k, and W is the J ´N

I
 weight matrix, 

mapping the weight for regressor n to electrode j. U and M were given by the 
experiment, while W was fitted using least squares.

The design matrix M is a set of eight regressors Mn
I

 representing expected 
“feature activations”64 for feature n in trial k. The value of regressor Mn

I
 in trial k 

was determined as sin nπ=8! skπ=8þ π=2ð Þ7
!! !!
I

, where sk = [0 … 7] indicates which 
one of eight angular location bins (width π=8

I
 radians) included the stimulus shown 

in trial k.
As in the monkey analyses, we measured single-trial stimulus representations 

using leave-one-out cross-validation, ensuring an equal number of trials from each 
location bin in the training set (Ut

I
 and Mt

I
). We estimated the weight matrix Ŵ

I
 and 

the design matrix M̂k
I

 for the left-out trial k, as follows:

Ŵ ¼ UtMT
t MtMT

t

! ""1

M̂k ¼ ŴTŴ
! ""1

ŴTUk

For each trial and time point, we repeated this analysis 100 times with 
randomly chosen training sets (except for the temporal generalization matrix, 
for which ten repetitions were run, Fig. 2b), and averaged M̂

I
 over all repetitions. 

Finally, we estimated the predicted angle θ̂k
I

 as the direction of the vector sum of 
feature vectors with length M̂nk

I
 pointing at angular location bin centers bn ¼ nπ=8

I
 

(n = 0…7). Trial-wise decoding strength was then defined as cos θ̂k ! θk
! "

I
. To 

correlate the decoding strength with behavioral biases (Fig. 5d–f), we increased 
the stability of trial-wise measures by temporal averaging over moving 200-ms 
windows (x axis ticks in Fig. 5f are centered at window centers).

Cross-temporal decoding. To explore the temporal generalization of the mnemonic 
and the response code over time, we trained decoders in independent time 
windows of the previous and current trial, and tested them in all time points 
of consecutive trials (from 0.25 s to 1.25 s after previous stimulus onset (Fig. 
2c, left), −0.25 s to 0.25 s after previous response (Fig. 2c, middle), and −1.25 s 
to 0.25 s after the stimulus onset of the current trial (Fig. 2c, right)). For the 
temporal generalization matrix (Fig. 2b), we averaged training and test data over 
independent windows of 50 samples (~97.77 ms). High-resolution time courses of 
mnemonic and response code (Fig. 2c) were obtained by training the decoder on 
averaged data from 0.5 s to 1 s after previous stimulus onset and −0.25 s to 0.25 s 
relative to the response time (dashed lines in Fig. 2b), respectively, and by testing 
on averaged data from five samples (~9.77 ms) through consecutive trials.

Preferred location. We computed the preferred locations of each neuron. Similar 
to ref. 6, the preferred location was determined by computing the circular mean of 
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the cue angles (0–315°, in steps of 45°) weighted by the mean spike count of the 
neuron over the delay period (3 s) following each cue presentation.

Cross-correlations. Dataset. For the estimation of functional connectivity, we 
estimated cross-correlations by computing the jittered cross-covariances65 of spike 
counts from simultaneously recorded neuron pairs, whose preferred locations were 
separated by a maximum of 60° (n = 67). We included pairs of neurons recorded 
from the same electrode (n = 21) and pairs recorded from different electrodes 
(n = 46). For each pair, we selected those trials in which the presented cue fell 
within the preferred range (pref, within 40° from either preferred locations) or 
outside the preferred range (anti-pref, all the other trials). We discarded those trials 
without at least one spike for each neuron in the pair.

Jittered cross-covariance. We used the Python function scipy.signal.correlate to 
compute cross-covariances between spike trains of simultaneously recorded pairs. 
Spikes were counted in independent windows of 10 ms37,66. For each trial, 1,000 
jittered cross-covariances were computed as follows65. We shuffled the spike counts 
within non-overlapping windows of 50 ms and computed cross-covariance for each 
of these jittered spike counts. This captured all the cross-covariance caused by slow 
dynamics (>50 ms) but destroyed any faster dynamics. Finally, we removed the 
mean of these jittered cross-covariances from the cross-covariance of each trial, 
ending up with correlations due to faster dynamics (≤ 50 ms). We considered the 
magnitude of the central peak of the cross-covariance in our analyses by averaging 
3 bins (±1 bin from the zero-lag bin). For the time-resolved cross-correlation 
function (Fig. 3c,d), we repeated this process for sliding windows of 1 s and steps of 
50 ms, and averaged across trials and neuronal pairs.

Putative exc and inh interaction. Because changes in connectivity strength 
(our hypothesis for activity-silent mechanisms) affect inversely exc peaks and 
inh troughs of cross-correlations34, we separately analyzed these two types 
of interactions. Similar to refs. 35,36, based on the average central peak of the 
cross-correlation function in the entire trial [−4.5 s, 2.5 s], we classified each pair 
into three subgroups: (1) those with a positive peak for both pref and anti-pref 
trials were classified as putative exc interactions, (2) those with a negative peak for 
both pre and anti-pref trials were classified as putative inh interactions and (3) we 
discarded those with an inconsistent peak sign between pref and anti-pref trials. 
In total, we analyzed the cross-correlation time course of n = 47 pairs of neurons 
(n = 27 exc and n = 20 inh; from different electrodes n = 20 exc and n = 13 inh). We 
confirmed that our results held when analyzing only pairs from different electrodes 
(Fig. 3c; exc: P = 0.01, n = 20; inh: P = 0.04, n = 13, one-sided permutation test).

Delay rate versus ITI cross-correlation analyses. As shown in Fig. 3e, we sought 
evidence for an interplay between attractor and subthreshold network dynamics 
in the PFC. To this end, we computed the trial-by-trial correlation between the 
cross-covariance peak (see above) in the ITI—at a time point when there was no 
firing-rate tuning (activity-silent period, Fig. 3d)—and the mean firing rate of the 
two neurons at the end of the preceding delay period (last 2 s, delay-fr, Fig. 3e) 
for exc interaction pairs under the pref and anti-pref condition (see above). For 
each pair, we obtained demeaned values for each trial by subtracting the mean 
firing rate and the mean cross-covariance peak across all trials, respectively. This 
allowed us to compute the correlation based on trial-by-trial measurements of all 
pairs together (n = 27) to increase statistical power. Error bars were then computed 
based on a bootstrap approach on all trials for all pairs. A local activity-dependent 
subthreshold mechanism for ITI memory traces predicts that for pref trials, but not 
for anti-pref trials, firing-rate variations in the delay period determines the degree 
of latent variable loading (cross-covariance peak) in the ITI (Fig. 3e).

Simulating bump reactivation. We used a previously proposed computational 
model39,67,68 to study serial dependence between two consecutive trials. The model 
consists of a network of interconnected 2,048 excitatory and 512 inhibitory 
leaky integrate-and-fire neurons69. This network was organized according to a 
ring structure: excitatory and inhibitory neurons were spatially distributed on a 
ring so that nearby neurons encoded nearby spatial locations. All connections 
were all-to-all and spatially tuned, so that nearby neurons with similar preferred 
directions had stronger than average connections, while distant neurons had 
weaker connections. Inhibitory-to-inhibitory connections were untuned. Network 
parameters were taken from ref. 67 except for the following:

GEE;AMPA ¼ 0:1 nS; GEI;AMPA ¼ 0:192 nS

GEE;NMDA ¼ 0:42 nS; GEI;NMDA ¼ 0:49 nS

GII;GABA ¼ 0:7413 nS;GIE;GABA ¼ 0:9163 nS

gext; I ¼ 5:8 nS; gext; E ¼ 5:915 nS

JþEE ¼ 7:1; σEE ¼ 18 ° ; JþEI ¼ JþIE ¼ 2:2; σEI ¼ σIE ¼ 32 °

where G values are the maximum conductances of the corresponding connections 
(e.g., GEE, AMPA is the total maximum conductance of AMPAR-mediated local 
excitation onto an excitatory neuron), gext,E and gext,I are the maximum conductance 
of external Poisson inputs to an excitatory or inhibitory neuron, respectively, and 
J+ and σ values define the amplitude and width of corresponding connectivity 
footprints, respectively. See ref. 67 for more details.

STP dynamics. Simulation of activity-silent mechanisms during the inter-trial 
period was done by adding two more variables x and u, as described in refs. 9,70, to 
excitatory presynaptic neurons as follows:

dx
dt

¼ 1" x
τx

" u x δ t " tsp
! "

du
dt

¼ U " u
τu

þ U 1" uð Þ δ t " tsp
! "

With tsp
I

 marking all spike times and δðtÞ
I

 being the Dirac delta function. We used 
the parameters U ¼ 0:2; τx ¼ 200ms; τu ¼ 1; 500ms

I
. The effective conductance 

of each excitatory synapse was then g ´ u ´ x
I

, with g being the corresponding 
maximum conductance parameter (see above). These STP dynamics affected only 
AMPA-receptor-mediated recurrent connections in the network. In a separate 
set of network simulations (not shown), we also included STP in inhibitory 
connections in the network (same parameters as indicated above) and we found 
that we could obtain a similar pattern of serial bias modulations as shown in Fig. 4d.  
This shows that our results are not specifically dependent on whether inhibitory 
connections present facilitation dynamics or not.

Stimulation and behavioral readout. External stimuli were fed into the circuit 
as weak inputs (0.25 nA) to neurons selective to the stimulus as previously 
described67. Each simulation of our computational model consisted of two trials 
run in sequence: a first stimulus of 250 ms, a first delay period of 1,000 ms, a 
network resetting input (nonspecific current −0.261 nA, duration 300 ms), an ITI 
of 1,300 ms, a second stimulus (250 ms) and a second delay period of 1,000 ms. 
The first and second cue stimuli were independently drawn randomly from 360 
uniformly distributed angular values, and only the network readout of the second 
trial was analyzed to obtain a ‘behavioral’ readout. The readout was obtained 
with a bump-tracking procedure: starting at cue presentation, the instantaneous 
network readout was derived as the angular direction of the population vector of 
single-neuron firing rates (computed in windows of 250 ms, sliding by 100 ms) 
considering the ±100 neurons surrounding the readout estimated in the previous 
time step. The instantaneous readout was iteratively derived to track the center 
of the bump (thus ignoring possible elevated activity extending from the fixation 
period), and the final behavioral output was defined as the readout in the last 
250 ms of the trial. Serial bias was calculated by measuring single-trial errors 
(behavioral readout minus target location) in relation to the angular distance 
θd between the first and second stimulus locations, as described above for 
experimental data.

Consecutive trials and bump reactivation. Reactivation of the previous-trial 
stimulus during the reactivation period (300 ms before the second stimulus 
onset) was accomplished by stimulating all excitatory neurons with a nonspecific 
external stimulus9,38. This stimulus exponentially increased with a rate of α = 10 s–1 
as βð1 " e" αðt" t0ÞÞ

I
, with β being the reactivation strength and t0 the time of onset 

of the stimulus. The reactivation strength was weak (β ¼ 0:17 nA
I

) or strong 
(β ¼ 2:9 nA
I

).

Rate and synaptic tuning. For each simulation shown in Fig. 3a,b, we computed the 
firing rate (r) and synaptic (s ¼ u ´ x

I
) tuning by computing the difference between 

neurons within (±50°) and outside (180 ± 50°) the previous bump location for both 
measures.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data that support the findings of this study are available at https://github.com/
comptelab/interplayPFC.

Code availability
The custom code used in this study is publicly available at https://github.com/
comptelab/interplayPFC.
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Extended Data Fig. 1 | Consistent decoding accuracy in delay and reactivation links these two representations at the neural ensemble level. a, The 
size of n=94 independent ensembles of simultaneously recorded neurons varies between 1-6. b, Fraction of neural ensembles with significant previous 
stimulus decoding accuracy (z > 1.96, see Methods) computed for all ensembles (dashed line) and only for those ensembles with strongest previous 
stimulus code averaged across the whole delay (see Methods). The incidence of stimulus decoding was significant in delay and reactivation, but not 
at ITI (two-sided binomial test at p=0.05, with n=94 and n=27 ensembles, for ‘all ensembles’ and ‘highest delay code’, respectively). Error bars are 
bootstrapped ±s.e.m. c, across-ensemble Pearson correlation between delay decoding accuracy (averaged in the entire delay) and decoding accuracy at 
different time points (two-sided p-values: 6.5e-30, 0.87, 0.035, n=94 ensembles). The ensembles with strongest delay code also had stronger decoding 
during reactivation, demonstrating the neural association between delay representations and reactivations despite absent code in the ITI. Error bars 
denote ±s.e.m. computed with a bootstrap procedure. d, Individual ensemble values from c, orange (Pearson correlation, two-sided p=0.035, n=94 
ensembles).
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Extended Data Fig. 2 | Noise correlation between pairs of neurons is negative at reactivation, as predicted by the attractor model. Bump-attractor 
dynamics are characterized by negative pairwise noise correlations for cues presented between the preferred locations (within pref) of the two neurons, 
but not for other cues (outside pref) 6. a, Periods used in noise correlation analyses: early (activity-silent), and late fixation (reactivation; n=94 ensembles, 
zoom-in of Fig. 1c). Error shading, bootstrapped 95% C.I. b, In the computational model (n=1,000 independent simulations), bump reactivations from 
subthreshold traces are characterized by negative noise correlations only during reactivation for within-pref trials, following the nonspecific input drive  
(Fig. 4). c, Noise correlations of PFC pairs with dissimilar preferred angles (60° < Δθ < 120°, n=34 pairs) were lower in late than in early fixation for 
within-pref trials (bootstrap test, p=0.0001, n=34, Cohen’s d=0.61). d, On average, lower noise correlations occurred only during reactivation and in 
within-pref trials (ANOVA trial condition x time point, F(4)=2.5, p=0.06, n=34). For within-pref trials, noise correlations differed between early and late 
fixation (bootstrap test, p=0.0001, Cohen’s d=0.61, n=34), being negative in late (bootstrap test, p=0.035, Cohen’s d=-0.32, n=34), but positive in early 
fixation (bootstrap test, p=0.018, Cohen’s d=0.37, n=34). Correlations were positive in outside-pref trials both during late and early fixation (bootstrap 
test, p=0.024 and p=0.06, respectively), with no significant difference (two-sided bootstrap test, p=0.93, n=34). In addition, negative noise correlations 
diminished when using the previous saccade location rather than the previous stimulus as reference (paired bootstrap test, p=0.005, Cohen’s d=-0.47, 
n=34), suggesting that the bump diffused only during the delay period, but not after the saccade 6. Unless stated otherwise, all bootstrap tests were 
one-tailed in the direction of the model predictions in b. All error bars indicate ±s.e.m.
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Extended Data Fig. 3 | Stimulus selectivity in both cross-correlation peaks and firing rates during the delay period prevents the isolation of 
activity-based and activity-silent processes. Same analysis as in Fig. 3, but performed during the current delay period (instead of ITI, Fig. 3) and selecting 
pref and anti-pref trials based on current stimulus (instead of previous, Fig. 3). Note that these are different trials (no need to be consecutive), so exc 
(n=33 pairs) and inh (n=21 pairs) might differ from Fig. 3. a, Left, cross-correlation peak selectivity emerged and was sustained in the delay period (left, 
CCSI as in Fig. 3, computed in centered 500-ms windows sliding in steps of 50 ms) and consisted in enhanced central peaks (troughs) for exc (inh) 
following a preferred stimulus. Color bars mark the periods where the average CCSI is different from 0 (bootstraped 95% C.I.) Right, cross-correlation 
averaged over 0.5-3.5 s. Zero-lag correlation for pref and anti-pref are different in exc (p=0.03, n=33, two-sided paired bootstrap test) and inh (p=0.01, 
n=21, two-sided bootstrap test) conditions. b, Firing rate selectivity (pref - anti-pref) also emerges robustly in the delay period for neurons in exc and inh 
pairs. The selectivity in cross-correlation peaks (CCSI) can therefore be confounded with firing rate selectivity71 when analyzing data in the delay period. 
This prevents the unambiguous identification of activity-silent mechanisms in this task period. Our approach of analyzing data in the inter-trial interval, 
when there is no firing rate selectivity (Fig. 3f), gets around this problem. Gray shading marks the stimulus presentation. In all panels, error-bar shadings 
indicate ±s.e.m.

 71. de la Rocha, J., Doiron, B., Shea-Brown, E., Josić, K. & Reyes, A. Correlation between neural spike trains increases with firing rate. Nature 448, 802–806 (2007).
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Extended Data Fig. 4 | In a dataset with unpredictable stimulus-onset time, previous item representations were not reactivated in the pre-stimulus 
period. We conducted the same analysis as in human EEG (Fig. 2) in a previously published dataset (n=15 independent subjects for all panels; for 
experimental details, please refer to the original publication, ref. 33) with unpredictable fixation period durations (range 0.7 s-1.3 s). Decoding analyses 
were applied separately for data aligned to the onset of fixation (Fn, graded shading indicates range of possible stimulus onset times, upper panels) and 
aligned to the onset of the stimulus (Sn, graded shading indicates possible fixation onset times, lower panels). a, Tuning to previous-trial location (decoder 
trained in delay, 0.5s - 1.0s after stimulus onset) during previous-trial delay (left, stimulus aligned) vanishes in current-trial fixation (right, fixation 
onset aligned). No reactivation occurs. b, Average tuning reconstruction at different epochs for the delay decoder, indicated in a. c, Serial dependence 
separating trials with high (red curve, top quartile) from all other trials’ (black curve) decoding accuracy in early fixation (orange in a). Unlike in an 
experiment with predictable stimulus onset (Fig. 5), serial bias did not differ as a function of decoding strength. d, Difference in serial biases (Methods) 
between high-decoding and other trials were not significant at any time point in fixation. The black triangle marks the center of 0.2 s decoding window for 
the split in c. e-h, Parallel results were obtained when the analyses of panels a-d were run on data aligned to the time of stimulus onset instead of fixation 
onset. In d and h, time courses were smoothed using a squared filter of 5 samples. Periods with significant decoding in a,e are marked with black horizontal 
bars, indicating p<.001 in a two-sided bootstrap test. Shading indicates 95% C.I. in a,d,e,h, and ±s.e.m. in b,c,f,g.
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Extended Data Fig. 5 | Structured inhibition is necessary for repulsive serial biases at far distances. Top panel, illustration of two different models that 
have different inhibitory connectivity profiles. On the left, inhibitory connectivity strength from inhibitory to excitatory neurons is similar for all distances 
between their preferred locations. On the right, inhibition is structured such that similarly tuned neurons have stronger feedback inhibition. This shows 
that repulsive biases are caused by repulsive interactions between simultaneously active bumps in the network39,40, and are absent when there is no 
reignited bump that recruits localized inhibition at the flanks of the pre-cue bump of activity.
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Extended Data Fig. 6 | Serial bias split between high-decoding and other trials (Fig. 5) is robust to the choice of different percentiles. a, In monkey 
behavior b, In human behavior. X-axis indicates quantiles used for the split in high- and low-decoding trials (Fig. 5), from a total of n=1362 trials in a, 
and a range of 792-908 trials per subject in b. Error bars are ±s.e.m. (over n=1362 trials in a, and over n=15 subjects in b) and colored bars mark where 
corresponding difference in serial biases is different than zero (p<0.05, two-sided bootstrap test).
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Extended Data Fig. 7 | The effect on serial biases of targeting dlPFC with TMS diminishes in the course of the experimental session. Serial bias plots 
averaged across n=20 independent subjects for trials with TMS applied in vertex (a) and PFC (b), and difference between serial biases computed for sham 
and weak-tms trials in vertex (black) and in PFC (red) blocks (c). Same analyses as in Fig. 6, but (top) analyzing trials from the full session, (middle) first 
half session (225 trials, replication of Fig. 6) and (bottom) last half session (225 trials). The behavioral impact of PFC TMS stimulation declined through 
the session, as if subjects desensitized (prev-curr × TMS intensity × session-half t11083 = –2.38, p = 0.017. Methods, Linear Mixed Models). Serial biases were 
modulated by TMS in PFC, but not in Vertex (prev-curr × TMS intensity × coil location, t18272 = 2.21, p = 0.027. For dlPFC: prev-curr × TMS intensity, t11087 = 2.13,  
p = 0.032. For Vertex: t7166 = 0.03, p = 0.97. Methods, Linear mixed models) when analyzing the full session, and analyzing only the first half session  
(t9133 = 2.51, p = 0.011). x-axis coordinates mark the central value of windows (π/2 radians, sliding by π/30 radians) used to calculate behavioral biases.
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Extended Data Fig. 8 | Consistent fixation-period single-pulse TMS effects on serial biases: first experiment. Serial bias plots averaged across n=20 
independent subjects for trials with TMS applied in vertex (a) and PFC (b), and difference between serial biases computed for sham and weak-tms trials 
in vertex (black) and in PFC (red) blocks (c). Same as Extended Data Fig. 6, but only analyzing data from the original study (n=10 subjects). Similarly to 
when pooling both the original and replication studies together, the behavioral impact of PFC TMS stimulation declined throughout the session, however 
not significantly (prev-curr × TMS intensity × session-half t5701 = –1.73, p = 0.08. Methods, Linear Mixed Models). Serial biases were modulated by TMS in 
PFC, but not in Vertex (t5705 = 1.92, p = 0.05) when analyzing the full session, and analyzing only the first half session (t3059 = 2.59, p = 0.009, Methods). 
x-axis coordinates mark the central value of windows (π/2 radians, sliding by π/30 radians) used to calculate behavioral biases.
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Extended Data Fig. 9 | Consistent fixation-period single-pulse TMS effects on serial biases: replication experiment. Serial bias plots averaged across 
n=20 independent subjects for trials with TMS applied in vertex (a) and PFC (b), and difference between serial biases computed for sham and weak-tms 
trials in vertex (black) and in PFC (red) blocks (c). Same as Extended Data Fig. 6 and 7, but only analyzing data from the pre-registered (https://osf.io/rguzn/)  
replication study (n=10 subjects). Similarly to the original experiment, the behavioral impact of PFC TMS stimulation declined throughout the session, 
however not significantly (prev-curr × TMS intensity × session-half t5375 = –1.63, p = 0.1. Methods, Linear Mixed Models). Similarly to the original study, 
serial biases were more strongly modulated by TMS in PFC than in Vertex, however not significantly (t5379 = 1.12, p = 0.25) when analyzing the full session 
and the effect was stronger when analyzing only the first half-session (t2675 = 1.91, p = 0.06, Methods). x-axis coordinates mark the central value of 
windows (π/2 radians, sliding by π/30 radians) used to calculate behavioral biases.
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Extended Data Fig. 10 | A phenomenological model of our hypothesis on how long-term physiological effects of single TMS pulses affect serial bias 
curves in event-related experimental sessions. Our TMS results show a difference between the effects of sham stimulation at the vertex and sham 
stimulation over dlPFC (Fig. 6). We interpret this baseline difference as the possible effect of long-term physiological alterations by single pulses 58 (but 
see ref. 72) that carry over from “strong-tms” trials to “no-tms” trials. We explicitly implemented this interpretation in the following way: we generated 
trial-by-trial responses biased depending on the sequence of stimuli according to a given baseline serial bias curve (a, “Vertex” condition where TMS is 
ineffective). In the “PFC” condition the serial bias strength changed depending on TMS conditions: in “weak-tms” trials the pulse had the acute effect 
of increasing the bias strength momentarily by an additive factor (3 times the baseline bias strength), in “strong-tms” trials the effect of the pulse was 
chronic: the bias changed with a negative additive component (equal in magnitude to the baseline strength), which decayed slowly through subsequent 
trials (10% decay/trial). When collapsing together “responses” obtained on the basis of this model through a sequence of randomly selected “no-tms”, 
“weak-tms” and “strong-tms” trials, serial bias curves showed the pattern observed experimentally, where sham (“no-tms”) trials show repulsion in the 
“PFC” condition (panel b) and not in the “Vertex” condition (panel a). The difference of serial bias curves for “weak-tms” and “no-tms” then showed the 
modulation clearly in “PFC” and not in “Vertex” (panel c), as seen in the data (Fig. 6).

 72. Romero, M. C., Davare, M., Armendariz, M. & Janssen, P. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat. Commun. 10, 2642 
(2019).
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size For the analysis of monkey data we were not able to predetermine sample sizes because this was data acquired previously (Constantinidis et 
al 2001). For human data, sample sizes were based on relevant prior literature. In the case of the EEG study, we matched the sample size 
(n=15) to the one used in a previous study that successfully decoded memory contents from EEG in an identical task (Foster et al. 2015). In 
the case of the TMS study, we predetermined the sample size (n=10) considering that TMS-induced memory reactivations had been shown in 
a previous study with 6 participants (Rose et al. 2016). We validated the results in a replication experiment with the same sample size (n=10).

Data exclusions * No monkeys were excluded from the analysis. In the EEG study, one participant aborted because of physical discomfort. Another participant 
repeated the session on a different day because they aborted their first session with too few trial blocks. For this participant we only analyzed 
session 2. In the TMS study, one participant dropped the study when acquiring her MRI because she suspected pregnancy. 
* For neural data analyses, we excluded neurons without significant tuned delay activity. This was because of the hypothesis of our study (we 
wanted to explore the interaction between persistent and activity-silent mechanisms) and was predetermined in this study, as in other 
previous studies with this dataset (Constantinidis et al 2001; Compte et al. 2003; Wimmer et al. 2014). 
* For behavioral analyses, we excluded trials where behavioral reports were too far from the target to remove guess trials that may have not 
engaged working memory. For monkeys, this was done directly at acquisition time and could not be predetermined for this study (criterion 
report more than 20 degrees away from target). For  humans, we excluded trials with responses further than 1 radian from targets in the 
angular direction and further than half the radius (2.25cm) in the radial direction.  
* For EEG analyses, we excluded outlier trials based on the voltage trace variance and alpha-power variance over each session. This is 
customary practice to remove EEG artifacts. Specific thresholds were set at the time of pre-processing of the data prior to final analyses.

Replication We designed a replication study for the TMS experiment, to test the bias-enhancing effects of weak TMS stimulation and the disappearance of 
the effects as the session progressed. The methods, hypotheses and even the analysis codes for this replication study were pre-registered 
(https://osf.io/rguzn) prior to acquiring the data. Methods were applied as literally pre-determined and the results were parallel to our 
previous findings, validating our results. In the manuscript we report the aggregated data (participants were independent for the 2 studies), as 
well as the individual data for each experiment (supplementary data).

Randomization Our study had a within-subject design, so randomization of participants across groups is not relevant for the study. Conditions of interest were 
typically randomized in our design: cue locations were pseudo-randomly chosen in monkey studies, and both cue locations and delay lengths 
were random in human EEG studies. For TMS experiments, cue locations and TMS intensity were random during experimental blocks, and 
TMS coil location was kept constant in each block and alternated from block to block, the order being counterbalanced in the 2 sessions of the 
same participant.

Blinding Blinding was not necessary in regard to participants because this was a within-subject design with randomized task contingencies. For the 
TMS study, the experimenter could not be blind to the location of the coil.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Monkey subjects were four adult male rhesus macaques. Two of the animals were tested 20 years ago, when age reporting was 
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Laboratory animals not customary. From their reported weights (Constantinidis et al. J. Neurosci. 21:3646, 2001) they were fully grown adults, so we 
can estimate the age at more than 6 years old. The ages of the other two animals reported in the study (with only behavioral 
data) were both 9 years old.

Wild animals This study did not involve wild animals.

Field-collected samples This study did not involve samples collected from the field.

Ethics oversight All experiments were conducted in accordance with the guidelines set forth by the US National Institutes of Health, as reviewed 
and approved by the Yale University Institutional Animal Care and Use Committee, and by the Wake Forest University 
Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics We studied healthy controls. The study does not address any specific covariate of interest across individuals, but within-subject 
comparisons between trial types.

Recruitment Participants were recruited from a volunteer database, mostly including people associated with the research institute and 
hospital, in all cases naïve to this study. 

Ethics oversight  Research Ethics Committee of Hospital Clínic (Barcelona)

Note that full information on the approval of the study protocol must also be provided in the manuscript.




