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Interplay between persistent activity and
activity-silent dynamics in the prefrontal cortex
underlies serial biases in working memory
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Joao Barbosa
Josep Dalmau
Albert Compte

Persistent neuronal spiking has long been considered the mechanism underlying working memory, but recent proposals argue
for alternative ‘activity-silent’ substrates. Using monkey and human electrophysiology data, we show here that attractor
dynamics that control neural spiking during mnemonic periods interact with activity-silent mechanisms in the prefrontal cortex
(PFC). This interaction allows memory reactivations, which enhance serial biases in spatial working memory. Stimulus infor-
mation was not decodable between trials, but remained present in activity-silent traces inferred from spiking synchrony in the
PFC. Just before the new stimulus, this latent trace was reignited into activity that recapitulated the previous stimulus repre-
sentation. Importantly, the reactivation strength correlated with the strength of serial biases in both monkeys and humans, as
predicted by a computational model that integrates activity-based and activity-silent mechanisms. Finally, single-pulse tran-
scranial magnetic stimulation applied to the human PFC between successive trials enhanced serial biases, thus demonstrating

the causal role of prefrontal reactivations in determining working-memory behavior.

ing memory are still not fully understood. Ample evidence

supports a role for sustained neural activity in prefrontal' > and
other cortices*, possibly supported by attractor dynamics in recur-
rently connected circuits®’. However, recent studies have argued
that memories may be maintained without persistent firing-rate
tuning during memory periods®. This ‘activity-silent’ memory can
be mediated by slowly decaying intrinsic or synaptic mechanisms,
such as short-term synaptic plasticity”'’, or by activity-dependent
intrinsic mechanisms with a long time constant''** that could allow
the reactivation of memories from latent storage. This computa-
tional proposal has received support from neuroimaging studies,
whereby in some working memory tasks, despite good memory
performance, stimulus information cannot be retrieved from neural
delay activity, but later robustly reappears'* during comparison or
response periods (but see also ref. %).

The apparent incompatibility between activity-based and
activity-silent memory maintenance has led to viewing them as
exclusive alternatives®. However, modeling implementations of
activity-silent conditions invariably require the network to be con-
figured close to the same attractor regime’ that enables persistent
activity. This attractor nonlinearity is necessary to increase the
signal-to-noise ratio of the fading subthreshold signal for success-
ful memory reactivation’. At the same time, activity-silent memory
mechanisms may stabilize persistent activity in attractor networks
(for examples, see refs. ''¢"'%). Interestingly, modeling studies have
argued that the interaction of these mechanisms during the delay
period would be reflected behaviorally in serial biases'"'¢, but this
theoretically appealing hypothesis still lacks experimental support.

| he mechanisms by which information is maintained in work-

Serial biases in spatial working memory denote small but system-
atic shifts of memory reports toward nearby locations memorized
in the previous trial'>-?, which reveal a lingering representation of
previous memories. Uncleared memory remnants have long been
viewed as limiting working memory performance (proactive inter-
ference®), but recent proposals suggest that they may be useful to
inform working memory about the expected statistics in naturalistic
conditions® (but see **), similar to other history biases with longer
time scales and possibly different neural mechanisms (contraction
bias***). The functional relevance of biases implicates specific roles
of higher-order brain areas. On the one hand, these areas could sup-
press maladaptive biases to minimize performance degradation®*.
On the other hand, they might promote adaptive biases by main-
taining a representation of stimulus history®. Whether association
areas generate or suppress serial biases in primates is currently
undefined, and a mechanistic understanding of the generation of
any type of history biases is still lacking.

Both attractor dynamics® and activity-silent'"'*’' mechanisms
have been proposed to carry stimulus-selective information from
one trial to the next to effect serial biases. However, dependen-
cies of serial biases on inter-trial interval (ITI) durations*’-*?
are largely consistent with activity-silent and not activity-based
mechanisms''**'. Here, we sought to specify the interaction of
activity-based and activity-silent PFC mechanisms in supporting
serial biases while participants performed a spatial working mem-
ory task that engages attractor dynamics in the PFC®. Furthermore,
this approach may offer indirect evidence that activity-silent and
activity-based mechanisms co-occur during the delay period, as
proposed by computational models (for examples, see refs. '»!¢-1%),
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Telling these mechanisms apart in the delay period is problematic
because of their coactivation. By extending the relevant task periods
to the ITI, we propose a way to disentangle them and to study the
effect of their interaction on upcoming memories.

We compared the encoding properties of brain activity in the
delay and ITT periods to identify the mechanistic basis of the mem-
ory trace that spans consecutive trials. We used behavioral and elec-
trophysiological data collected in monkeys and humans: prefrontal
multiple-unit recordings in monkeys and scalp electroencepha-
lography (EEG) in humans. Between successive persistent activity
mnemonic codes, we found an activity-silent code in the PFC that
carried stimulus information through inter-trial periods. In addi-
tion, we found correlational and causal evidence, using transcra-
nial magnetic stimulation (TMS), to indicate that fixation-period
PFC reactivation from this activity-silent trace enhances attractive
serial biases. These findings underscore the behavioral relevance
of the dynamic interplay between attractor and subthreshold net-
work dynamics in the PFC and reconcile these seemingly conflict-
ing mechanisms. Our data suggests that this interplay could be the
basis of closely associated memory storage processes operating at
different time scales, thereby possibly serving different behavioral
purposes.

Results

We trained four rhesus monkeys to perform an oculomotor delayed
response task. The task consisted of remembering spatial loca-
tions at fixed eccentricity while maintaining fixation during a delay
period of 3s (Fig. 1a; Methods). The extinction of the fixation cue
triggered the monkey to execute a saccade toward the remembered
location and marked the beginning of a fixed ITTI of 3.1s, lasting
until the appearance of the stimulus cue of the new trial (Fig. 1b).
In addition, we tested 35 human participants in variations of the
task performed by the monkeys (Methods). In all cases, we recorded
the reported location and computed behavioral errors as angular
distances to corresponding target locations. Following the methods
described in previous studies'’, we analyzed the dependence of the
current-trial error on relative previous-trial location. Both monkeys
and humans showed biased reports relative to previously remem-
bered locations. These biases were attractive for short distances
between previous-trial and current-trial locations, and repulsive
for large previoustcurrent distances (Figs. 1a and 2a). Our primary
goal was to test the hypothesis that activity-silent and persistent
activity working memory mechanisms interact to produce serial
dependence effects. To this end, we investigated electrophysiologi-
cal measurements in the IT1, including periods from the response to
the subsequent fixation period.

Reactivation of previous memory information in the monkey
dorsolateral PFC before new stimulus presentation. We collected
single-unit responses from the dorsolateral PFC (dIPFC) of two
monkeys while they performed the task. A substantial fraction of
neurons in this area showed tuned persistent delay activity during
the mnemonic delay period® (n=206 out of 822, Methods). These
specific neurons are part of bump-attractor dynamics that charac-
terize the memory periods of this task’. Based on this evidence, we
assumed an attractor dynamics mechanism for persistent activity,
and these terms are used interchangeably to refer to this network
regime. Based on our hypothesis that an interplay of activity-silent
and attractor mechanisms support serial biases, we focused our
analyses on these neurons, and we grouped them in simultaneously
recorded ensembles for decoding analyses (1=94 ensembles, size
range of 146 neurons; Extended Data Fig. 1a).

The firing rates of dIPFC neurons exhibited strong dynamics in
the ITT compared to the characteristic stable dynamics during mne-
monic delay periods (Fig. 1b). Phasic rate increases at response exe-
cution (R,.,, Fig. 1b) and fixation onset (F,, Fig. 1b) were hallmarks
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Fig. 1| Previousldrial stimulus code reactivates before the forthcoming
stimulus. a, General task design (left) and serial bias for four monkeys
(n=11,670 consecutive trial pairs; right). Trials with counterd lockwise
previous reports relative to the current stimulus were collapsed into
clockwise trials (folded errors, Methods). Positive (negative) values
indicate response attraction (repulsion) toward previous locations
presented at that relative distance from the current stimulus. Shading
indicates bootstrapped +s.e.m. Black horizontal solid bars represent

P <0.05 (onef ided permutation test). Durations in different experiments
are separated by vertical bars (monkey | EEG | TMS). b, Averaged,
normalized firing rate of n=206 neurons during the ITI (spike counts of
3000 s causal square kernel, Z¥ cored in the interval [# .55, 1.5s]). Gray
vertical bars mark the response and stimulus cue periods. ¢, The decoding
accuracy of previous}rial stimulus from n=94 independent ensembles,
computed as the distance from the mean of the decoding accuracy in
shuffled surrogates, in units of their standard deviation o (Methods),
averaged over ensembles with strong (red) and weak (gray) decoding

in the delay period (Methods). Aligned with anticipatory ramping in late
fixation (b), the previousl{rial stimulus code reappears specifically in
ensembles with stronger delay code (Extended Data Fig. 1). Black bars
mark time points for which a decoding accuracy of 99.5% Cl is above
zero. d, Tuning to previousf rial stimuli, aligning responses to the preferred
cue as defined in the delay period, and computed in different trial epochs
(colorlf oded in ¢; two ided bootstrapl est at preferred location: P=0.015,
Cl=[B/ .3,6 .03], Cohenis d=6 .17 (cyan); P=0.865, CI=[6 .12, 0.14],
Cohenis d=0.012 (deep blue); P=0.025, CI=[0.024, 0.33], Cohenis
d=0.15 (orange); n=206 neurons, shading depicts +s.e.m.). In all panels,
unless stated otherwise, error shading marks bootstrapped 95% Cl.
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Fig. 2 | In human EEG, the delay code also reactivates in the fixation
period. a, Serial bias for human participants. Shading represents +s.e.m.
b, Temporal generalization of previous timulus code for all combinations
of training and testing times from previous}{rial stimulus onset (S, ) and
response (R, to currentlrial fixation (F,) and stimulus onset (S,). Solid
white lines mark the discontinuity of EEG fragments aligned to S, R,
and S,. Dashed lines indicate the temporal center of transversal sections
shown in ¢. a.u., arbitrary units. ¢, The decoding of previous stimulus during
previousl{ rial delay (left), response (middle) and currentlrial fixation
period (right) for decoders trained during previousl{rial delay (black

line, 0.5sfil.s after S, lower dashed line in b) and during previous)|rial
response (gray line, 0.5§ window centered on R+, upper dashed line in
b). The delay code is stable during the delay period, disappears during the
response and reappears in current}rial fixation; see also d. In contrast,
previousl{ rial responsef{ elated information is dynamic and not present

in the fixation period. Error shading represents 95% ClI. d, Defh eaned
reconstruction of tuning to the previous stimulus at different epochs for
the delay decoder, marked in ¢ (twoff ided bootstraplf| est preferred versus
antilf referred location: P<1x10%, Cl=[0.55, 0.73], Cohenis d=3.6
(red); P=0.69, CI=[0 .22, 0.16], Cohenis d=0.10 (blue); P=1x10%,
Cl=[0.17, 0.36], Cohenis d=1.35 (orange); shading represents +s.e.m.). In
a and b, the black horizontal bars indicate significant deviation from zero
(bootstrap), P<0.05in a, P<0.005 in ¢ (both twol] ided). For all panels,
n=15 independent participants.

in these dynamics, but we also noted an increase in the firing rate
before stimulus presentation (S,, Fig. 1b), which could reflect the
anticipation of the upcoming stimulus due to fixed-length fixa-
tion periods. We wondered whether these rate changes were also
related to dynamic changes in stimulus selectivity. Under the
attractor-based hypothesis for serial biases®, sustained stimulus
selectivity would be expected to extend from the delay period of the
previous trial into the fixation period of the next trial. We measured
selectivity by training a linear decoder on the spike counts of our
neuronal ensembles and referenced its accuracy to that obtained by
chance using a resampling approach (Methods). During the delay
period, neuronal ensembles carried stimulus information and single
neurons showed stimulus tuning (Fig. 1c,d, red). After report, the
memorized location was still decodable from ensemble activity, but
the tuning curves of single neurons showed a selective suppression
of responses in their mnemonic preferred locations (Fig. Ic, cyan).
This could reflect neuronal adaptation mechanisms or saccade
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preparation toward the opposite direction to regain fixation. In the
middle of the ITI, decoding accuracy was not different from chance
and neurons were no longer tuned to the previous stimulus (Fig.
lc,d, deep blue), which suggests that the encoding of the previous
stimulus had disappeared from neural activity. However, immedi-
ately before the presentation of the new stimulus and aligned with
anticipatory ramping activity (Fig. 1b), the previous stimulus was
again decoded and single-neuron tuning reappeared (Fig. lc,d,
orange). This reemergent stimulus information is consistent with
previously-reported spiking selectivity during the ITT”, but we
show here that there is a period in the ITI in which stimulus infor-
mation cannot be decoded before it reappears at the end of the fixa-
tion period (late fixation). Furthermore, this code in late fixation is
a reactivation of the representation active in the previous trial delay.
This is supported by two pieces of evidence. First, information reap-
pearance occurred more strongly in those neuronal ensembles that
maintained more stimulus information during the delay period
(Fig. 1c; Extended Data Fig. 1). Second, the converging pattern of
noise correlations at the end of the delay® and in late fixation sug-
gested a similar attractor-like network activation in both periods.
Indeed, when the preceding stimulus appeared between the pre-
ferred locations of two neurons, these PFC neuron pairs exhibited
negative noise correlations in late fixation (Extended Data Fig. 2).
These negative noise correlations are a signature of a fixed-shape
bump that diffuses from the initial stimulus location: as it moves
closer to the preferred location of one neuron and away from the
other, the firing rate increases for one neuron and decreases for
the other®. Negative noise correlations appeared exclusively dur-
ing late fixation, which strongly suggests that a bump is reactivated
at that specific time point (Extended Data Fig. 2). Taken together,
these results support that there is a reactivation of memory-period
representation in the fixation period (reactivation period) follow-
ing a period of absent selective neuronal firing in the dIPFC. This
reactivation points at a relationship between mechanisms of delay
memory encoding and mechanisms bridging the ITI to facilitate
reactivation before the new stimulus.

Previous trial memory information reactivation in the fixation
period of human EEG traces. In line with the monkey electrophysi-
ology data, we found similar previous-trial traces in human EEG
data (n=15). We extracted alpha power from all electrodes and used
a linear decoder to reconstruct the target location from EEG signals
in each trial® (Methods). The target representation was signifi-
cantly sustained during delay and response periods and in the fixa-
tion period of the next trial (Fig. 2b, diagonal axis). Importantly, at
each time point, this dynamic EEG decoder uses signals originating
from different cortical regions and could therefore combine tempo-
rally overlapping but spatially distinct representational components
(for example, mnemonic versus response-related components). We
therefore trained different linear decoders during the delay period
(500+1,000 ms after stimulus onset, delay code’) and around the time
of the response (250 ms before to 250 ms after response, response
code'), and used the respective weights to extract previous-stimulus
information throughout different periods of the trial (Fig. 2c). The
delay code was stable during stimulus presentation and delay, but
disappeared during the ITI, around the time of the response. In con-
trast, the response code did not generalize beyond the time at which
the decoder was trained (Fig. 2c). We found that the delay code of
the previous trial reappeared during the fixation period (Fig. 2¢,d,
orange), similarly to what we found in the monkey neurophysiol-
ogy data (Fig. 1¢), but slightly earlier in the ITI. In our human data,
reactivation was possibly triggered by the onset of the fixation dot,
while reactivation in the monkey PFC could be triggered by a ramp-
ing anticipatory signal in the fixed-duration ITI (Fig. 1b). These
results provide a confirmatory correspondence with the time course
of mnemonic decoding in the monkey data, but they also show the
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temporal continuity between qualitatively distinct memory and
response codes. The bidirectional transfer of information between
memory and response representations in different brain areas could
provide a bridge between the memory and reactivation periods
observed in the PFC. Alternatively, response codes may just reflect
the output motor commands, and mnemonic codes may subsist at a
subthreshold level in the PFC to allow reactivations. We tested this
hypothesis with a cross-correlation analysis of PFC units.

Increased cross-correlation suggests a latent trace during the
ITI. We sought experimental validation for whether activity-silent
mechanisms in the dIPFC still maintained stimulus information
during the ITI between consecutive trials. We reasoned that if such
latent activation (for example, a synaptic trace’) affected a group
of interconnected neurons, these would be more likely to exceed
their spiking threshold in synchrony®*. Following a preferred cue,
neurons would increase their activity in the delay period and main-
tain latent activity-silent traces in the subsequent ITI that would
be reflected in enhanced synchrony*, but not enhanced rates.
Moreover, we deduced that this reasoning was pertinent only to
effective excitatory interactions (exc); that is, neurons interacting
through effective inhibition (inh) should instead show a reduced
probability of coactivation following a possible inhibitory efficacy
enhancement by preferred stimuli in the previous trial™.

To test this hypothesis, we selected pairs of neurons with simi-
lar selectivity (n=67 pairs, Methods) so that they had consistent
activation (high or low firing rate) in the delay period. As per previ-
ous studies™, we divided the selected pairs on the basis of their
whole-trial cross-correlation peak sign in exc and inh interactions
(Methods). We considered the following two conditions (Fig. 3a;
Methods): trials in which the previous stimulus was shown close to
either preferred location (pref; Methods) or far from preferred loca-
tions (anti-pref). Then, we computed a cross-correlation selectivity
index (CCSI) by subtracting the amplitude of the central peak of the
jitter-corrected cross-correlation function (coincident spikes within
20 ms; Methods, similar to ref. *’) for pref and anti-pref trials for
each neuron pair (Fig. 3b). Our hypothesis predicts positive (nega-
tive) CCSI for exc (inh) pairs in the ITT; that is, higher (lower) spike
synchrony following preferred stimuli.

The CCSI computed in a period of the ITI where the firing rate
had ceased to represent the stimulus (activity-silent period, Fig.
lc,d, deep blue) was positive, which reflects selectivity in neuronal
synchrony to the previous stimulus for all interactions (Fig. 3c). We
then investigated changes in CCSI values for exc and inh interactions
across our two periods of interest: the activity-silent and reactiva-
tion periods (Fig. 1c, deep blue and orange, respectively). We found
that their reactivation-period CCSI values significantly differed,
being negative for inh interactions and positive for exc interactions
(Fig. 3¢). Finally, we explored the CCSI dynamics throughout the
trial (Fig. 3d) and found that with the exception of immediately
after the previous response, in which neurons showed anti-tuning to
previous-trial stimulus (Fig. 1c), the CCSI for exc pairs was always
positive, indicating stronger central-peak cross-correlation when
the previous stimulus was preferred (Fig. 3d, orange). Conversely,
for inh interactions, the CCSI was negative (stronger inh interac-
tions following a preferred stimulus) only during reactivation and
the previous-trial delay period (Fig. 3d, cyan), the periods in which
PFC firing rates showed stimulus selectivity (Fig. 1c). This pattern is
consistent with the latent memory mechanism residing in excitatory
neurons and only being reflected in inhibitory interactions through
collective engagement in bump-attractor dynamics during the delay
period and at the time of reactivation. Importantly, this analysis
was done during a period without firing-rate selectivity (Fig. 3f),
thus free of a potential confound from firing rates (see Extended
Data Fig. 3 for the same analysis performed during the delay period,
where that caveat cannot be ignored.)
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Fig. 3 | Crossjorrelation selectivity to previousftrial stimulus suggests
an activitylkilent trace in the PFC. a, Schematic of trial selection. For
neuron pairs with a similar preferred location (<60} w e separated trials
with stimulus near the preferred locations (pref) of the pair from trials
with far locations (antil§ ref). b, Cross{ orrelation (X} orr) of a sample
PFC pair shows zerofgg p eak selectivity to a previous)|rial stimulus in
the activityl] ilent period (oneff ided permutation test, P=0.025, Cohenis
d=0.10, n=44 independent trials). ¢, The CCSI was consistently positive
in the activityl] ilent period, but became negative for inh interaction pairs
during reactivation (twolbided permutation test, interaction period X exc/inh,
P=0.03, Cohenis d=—0.6). At reactivation, the CCSI for exc (n=27)

and inh pairs (n=20) significantly differed (twof| ided permutation test,
**P=0.006, d=0.75). P values report results of onelf| ailed permutation
tests according to our hypotheses (CCSI> O for exc, CCSI< O for inh).

d, The CCSlin the ITI (1§ windows, 50 s steps) for exc (n=27) and
inh pairs (n=20). Except immediately after the report, where neurons
show antil{ uning (Fig. 1d), the CCSI was positive for exc interactions.

The CCSI was negative for inh interactions during previous delay and
reactivation. Data were smoothed with a fivel] ample square filter.

e, Trialld vl rial correlation between previous) elay spike counts for exc
pairs and the ITI crosslf orrelation central peak (activitylf ilent period in d,
Methods) is positive only for the pref condition (onel] ided permutation
test P=0.017, interaction P=0.01; n=320 and 769 trials for pref and
anti ref, respectively). f, The absence of a mean firing rate difference
between the pref and antil§ ref conditions (same pairs as in d) discards a
confound between the rate selectivity and the CCSI. Error bars represent
bootstrapped 95% Cl (b and e) or s.e.m (c and d).

This proves the existence of a latent trace of the stimulus in
the PFC during the ITI, but it could still be reflecting selective
subthreshold inputs from a different area that maintains tuned
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persistent activity instead of selective local modulations in the PFC.
To rule out this possibility and to strengthen the idea that stimu-
lus information is directly transferred from an activity-based to an
activity-silent code in the PFC, we tested whether the selectivity
of exc interactions during the activity-silent period depended on
the spiking activity of corresponding neurons in the previous delay
period. Assuming a neuron-specific activity-dependent mecha-
nism supporting the activity-silent code in the ITI, we predicted
that the magnitude of the cross-correlation central peak in the
activity-silent period would correlate on a trial-by-trial basis with
the mean spike count recorded in the preceding delay period and
specifically for pref (and not for anti-pref) trials (Methods). This
prediction was confirmed in the experimental data (Fig. 3e). Thus,
this cross-correlation analysis supports the hypothesis that previ-
ous, currently irrelevant, stimulus information remains in prefron-
tal circuits in latent states, undetected by linear decoders that do not
take spike timing into consideration (Figs. 1c and 3f).

Bump reactivation as a mechanism for stimulus information
reappearance. Based on our electrophysiology results and on prior
modeling studies’, we formulated the bump-reactivation hypothesis
to explain our data. We hypothesized that information held in mem-
ory as an activity bump during the delay period of the previous trial®
would be imprinted in neuronal synapses as a latent activity-silent
trace during the ITL This latent bump could be reactivated by the
nonspecific anticipatory signal seen in the mean firing activity in
the PFC (Fig. 1b) or by anticipatory mechanisms following an exter-
nal cue that predicts stimulus presentation, such as the onset of a
fixation dot (Fig. 2¢). In fact, in a separate EEG experiment in which
fixation lengths were jittered so as to make stimulus onsets unpre-
dictable, we could not find any delay code reactivation (Extended
Data Fig. 4).

To test the bump-reactivation hypothesis, we built a
bump-attractor network model of spiking excitatory and inhibi-
tory neurons. Based on our electrophysiology findings, short-term
plasticity (STP) dynamics were included only in excitatory synapses
(Methods). In each trial, stimulus information was maintained in
activity bumps during the delay period by virtue of recurrent con-
nectivity between neurons selective to the corresponding stimulus.
During the ITI period, model neurons did not exhibit detectable
tuning to the previous-trial stimulus (Fig. 4a, black, and Fig. 4b,
deep blue)'**'. However, the synapses of neurons that had partici-
pated in memory maintenance in the previous delay period were
facilitated due to STP (Fig. 4a, deep blue). Parallel to our analysis
presented in Fig. 3, this was reflected in the central peak of the
ITT cross-correlation for pairs of excitatory model neurons, which
maintained selectivity to the previous stimulus (Fig. 4a) even in
the absence of single-neuron firing-rate selectivity (Fig. 4a, deep
blue). We found that single-neuron tuning could be recovered from
the hidden synaptic trace using a nonspecific input (drive) to the
entire population (Fig. 4a,c; Methods, see also refs. >*). Our bio-
logically constrained computational model was therefore an explicit
implementation of the bump-reactivation hypothesis that we
had formulated.

The impact of bump reactivation on serial biases. We next used
our computational model to derive behavioral and physiological
predictions to test in our data, in particular in relation to serial
biases. To simulate serial biases with our computational model, we
ran pairs of consecutive trials with varying distance between the
two stimuli presented in each simulation. We used the final loca-
tion of the bump in the second trial (current-trial memory) as the
‘behavioral' output of the model in that trial. We were able to model
the profile of serial biases that were experimentally observed (Fig.
4d; Extended Data Fig. 5), similar to previous models'®’. To test
the impact of bump reactivation on serial biases, we compared the
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Fig. 4 | Bumplhttractor model with STP accounts for serial dependence
and neurophysiology. a, The average firing)fate tuning (black) and synaptic
tuning (green) for 5,000 network simulations of two successive trials during
the delay period (Methods). In the mnemonic period (red triangle), both
rate and synaptic tuning are at their maximum, both driven by persistent
bumpttractor activity (red plot in b). Following the memory period, a brief
nonspecific hyperpolarizing input resets the baseline network state for the
duration of the ITI (deep blue triangle and plot in b). This is reflected in a
vanishing rate tuning, but long}asting synaptic tuning that can regenerate
firing)fate tuning (orange triangle and plot in b) through reactivation by a
nonspecific input drive (cyan bar). b, Averaged single)heuron tuning to the
previousrial stimulus at different epochs, marked as colored triangles in a.
¢, Crossitorrelation of model neurons in the ITI differed for the previousl¢rial
stimulus in the preferred location (pref, black) and for anti{bref trials (gray)
despite no firing}fate selectivity (a and b, deep blue). d, Serial bias plots
computed from éehavioral responsei (Methods) in three different conditions
of nonspecific depolarizing drive. A weak anticipatory drive increases
attractive serial biases and produces repulsion from more distinct previous
memories, while a strong drive removes serial biases.

behavioral output of simulations with and without drive before the
second trial stimulus (Methods). Bump reactivation resulted in
stronger attractive biases for similar successive stimuli, and in repul-
sive biases for more dissimilar successive stimuli (Fig. 4d, cyan). We
found that tuned intracortical inhibition**** was necessary for this
emergence of repulsive biases after bump reactivation (Extended
Data. Fig. 5; see refs. **! for an alternative mechanism). Finally, we
tested the dependence of this behavioral effect on the strength of
the nonspecific drive. A very short but strong impulse to the entire
network during the ITT quickly saturated all the synaptic facilitation
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variables, effectively removing all serial biases in the output of the
network (Fig. 4d, deep blue). Thus, in this model, bump reactivation
nonlinearly affects serial biases as the reactivation strength is varied.
In summary, our model reproduced the behavioral and neurophysi-
ological findings described in Figs. 1+3 and derived predictions
concerning memory reactivations from silent traces that we then
tested in the data.

Previous stimulus reactivation increases serial biases. The model
predicts that higher reactivation of previous memories in the fixa-
tion period should be associated with stronger serial biases (Fig.
4d). We tested this prediction in our neural recordings from mon-
key PFC and in EEG recordings from the human scalp.

Monkey PFC. We first classified each trial on the basis of
leave-one-out decoding of the previous stimulus trained and tested
on activity from two different time windows during fixation: during
a period with no stimulus information (activity-silent period; Fig. 1,
deep blue) and at the time of reactivation (Fig. 1, orange). For each
of these two windows, we separated high-decoding trials (first quar-
tile) from low-decoding trials (all other trials) and computed bias
curves separately. We found that serial biases were indistinguish-
able in the activity-silent period (Fig. 5a), but they were stronger
for high-decoding than for low-decoding trials at the time of bump
reactivation (Fig. 5b). This follows the prediction of our computa-
tional model, and it confirms the behavioral relevance of the bump
reactivation before stimulus onset. This result was not dependent on
a singular selection of trial separations, because for different pro-
portions of high-decoding and low-decoding trials, the serial bias
strengths (Methods) changed smoothly and remained consistent
with the reported result (Extended Data Fig. 6). We then repeated
the same analysis at different time points of the ITL. A significant
difference in serial bias strength (Methods) emerged only when tri-
als were classified as low-decoding versus high-decoding in the reac-
tivation period (Figs. 1c and 5¢, orange), and serial biases remained
virtually indistinguishable at all other time points (Fig. 5¢).

Human EEG. Analogous to the analysis of the monkey data, we
grouped trials on the basis of their leave-one-out decoding accuracy
of the previous stimulus (Methods). We separated high-decoding
and low-decoding trials at two different time points: at the time of
reactivation (Figs. 2 and 5f, orange) and at a fixation-period time
point without stimulus information (activity-silent; Fig. 5c, black).
Consistent with the monkey data and the prediction from our
model, we found a stronger serial bias for high-decoding than for
low-decoding trials for the reactivation period (Fig. 5¢), but not for
the activity-silent period (Fig. 5d), during which previous memory
content was not decodable (Fig. 2c). The analysis was repeated for
all other time points during the fixation period (Fig. 5f). Indeed,
behavior exclusively depended on decoding accuracy at the time of
delay code reactivation (Fig. 2, orange). Taken together, these results
support the hypothesis that previous-trial memory reactivation
before stimulus onset controls serial biases.

TMS-induced reactivations modulate serial biases. As a causal
validation of the influence of pre-stimulus PFC reactivation on
serial biases, we designed a TMS study. This is a relevant experiment
because memory-dependent changes in human EEG alpha power
cannot be unequivocally ascribed to a specific brain region, which
limits the correspondence of our EEG and monkey dIPFC data. In
particular, representations in larger and more organized occipi-
tal cortices might strongly contribute to visual EEG signals (for
example, see ref. **), but could yet be driven by top-down projec-
tions from association cortices*. Inspired by a previous study'* that
reported reactivation of latent memories using TMS, we causally
tested the role of the dIPFC in serial biases by applying single-pulse
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Fig. 5 | Bump reactivation from a hidden trace increases serial biases.
Serial bias for trials with high previousf{rial stimulus information (upper
quartile, red) and for all other trials (black) in monkeys (afic, n=1,362
trials) and in humans (dff, n=15 participants, with a range of 792808
trials in this analysis). See Extended Data Fig. 6 for different quantiles. a,
Trials selected based on a decoder trained and tested early in the fixation
period (black triangle in €), did not reveal differences in serial bias. b, Serial
biases were markedly enhanced for highld ecoding trials when training and
testing the decoder at the time of reactivation (Fig. 1c, orange triangle in
©). ¢, Differences in serial bias curves between high{ ecoding and other
trials became significant only in late fixation, concomitant with reactivation
(Fig. 1c). Triangles mark the center of decoding windows for the splits
shown in a and b. diff, Same analyses for human EEG (n=15 independent
participants). Note that for humans, d corresponds to an activityl ilent
period in late fixation (black triangle in f), and e to the reactivation period
in early fixation (Fig. 2c, orange triangle in f). f, As for monkeys, serial bias
differences in humans were significant only during reactivation. In ¢ and f,
time courses of differences between highld ecoding and other trials were
smoothed in time using a 5§ ample (monkey) and 16§ ample (human)
square filter. Black horizontal bars (b and ¢) mark significant differences
between highld ecoding and other trials (P < 0.05, oneff ided permutation
test). Error shading represents 95% Cl (c and f) or +s.e.m. (a, b, d and e).

TMS during the fixation period. We had two control conditions
to test our hypotheses: (1) we targeted the TMS coil at the dIPFC
and the vertex in interleaved blocks, and (2) we randomly chose
the TMS intensity in each trial (sham: 0%, weak-TMS: 70%, and
strong-TMS: 130% of the resting motor threshold (RMT) of each
participant; Methods). We found that TMS modulated serial biases
when targeted at the dIPFC but not at the vertex (Fig. 6). Moreover,
our computational model predicted a nonlinear dependence with
stimulation strength (Fig. 4d), which was supported by the TMS
data (Fig. 6b). Interestingly, the behavioral impact of PFC TMS stim-
ulation declined throughout the session, as if participants became
desensitized to the TMS pulse (Extended Data Fig. 7). Importantly,
we show combined results from two separate experiments of n=10
participants each, one being a preregistered replication (Methods;
Extended Data Figs. 8 and 9). These results provide causal evidence
for the involvement of the PFC in the serial bias machinery during
the ITL. Furthermore, we show that TMS affects serial biases in a
nonlinear manner, as predicted by model simulations that imple-
ment the bump-reactivation hypothesis via the interplay of bump
attractor and activity-silent mechanisms.

Discussion
By studying the neural basis of serial biases, we showed how the inter-
play of bump-attractor dynamics and activity-silent mechanisms

NATURE NEUROSCIENCE | www.nature.com/natureneuroscience



ARTICLES

Vertex b C
2 ——
€ = Zc
8 8 E E 1
= e B
3 3 £%
£ £ 3o 0
o o c o
c c = 2
= Sham  © S E
&1 & Ee PFC
w Strong-TMS W Vertex
25 T 1 -2 T 1 25 T 1
50 100 150 50 100 150 50 100 150
Relative location of previous Relative location of previous Relative location of previous

trial (°) trial (°) trial (°)
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for the first half of each session (225 trials, 2 sessions per participant,
n=20 participants; Extended Data Figs. 7i9). Serial biases were modulated
by TMS in the PFC but not in the vertex (previurr x TMS intensity x coil
location, tig,, =2.21, P=0.027. For the dIPFC: previeurr x TMS intensity,
thos7 =213, P=0.032. For the vertex: t;;;,=0.03, P=0.97. Methods, linear
mixed models; analysis performed on the entire session). In the PFC,

serial bias modulation depended nonlinearly with the stimulation strength
(AAIC=4.6, relative likelihood 0.9, for the comparison of regression
models with nonlinear versus linear TMS intensity factor; Methods). ¢, The
difference between serial biases computed for sham and weakl{lT MS trials in
the vertex (black) and in the PFC (red) blocks. Error bars are bootstrapped
+s.e.m. Solid black bars (b and ¢) mark significant differences (twolided
permutation test, P< 0.05, n=20 independent participants).

in the PFC maintains and eventually reactivates information about
previous stimuli in spatial working memory. In delayed-response
tasks, prefrontal tuned persistent activity consistent with
bump-attractor dynamics characterizes the delay period and cor-
relates with behavioral precision®*. We have now seen that this sus-
tained activation disappears from the prefrontal network between
trials, but is reactivated before the new trial (Figs. 1 and 2) and
enhances behavioral serial biases (Figs. 5 and 6). This reactivation
is directly linked to previous-trial activity: it emerged specifically in
those neural ensembles that showed strongest persistent tuning in
the delay period (Fig. 1¢; Extended Data Fig. 1), it was decoded from
human EEG data with decoders trained in the delay period (Fig.
2) and it exhibited the fingerprints of bump attractors as evaluated
using pairwise correlations (Extended Data Fig. 2). Activity-silent
mechanisms in the PFC bridge disconnected periods of persistent
activity, carrying trial-specific information from one trial to the
next (Fig. 3). Importantly, this latent tuning was directly associ-
ated with trial-by-trial firing rates in the preceding delay period
(Fig. 3e), thus establishing a coupling between activity-based and
activity-silent mechanisms in the PFC. Taken together, our results
are consistent with the view that attractor-based and activity-silent
mechanisms are jointly represented in the prefrontal circuit and
that their tight interplay influences representations in spatial work-
ing memory. We specified this in a computational network model,
whereby delay-period attractor dynamics imprint activity-silent
mechanisms, which then retain information between trials and
allow reactivations to recapitulate attractor states (Fig. 4).

Our data indicate that nonspecific PFC stimulation can revive
subthreshold information, thus supporting the ideas put forward
in computational models’ and in previous neuroimaging and EEG
studies'****. Importantly, we obtained explicit causal evidence
supporting the role of ITI reactivations in enhancing serial biases.
Similarly, recent causal evidence obtained in rodents® showed the
role of parietal activations in generating history-dependent biases.
However, the absence of selective mnemonic delay activity in rat
parietal neurons® suggests that parietal ITI representations do not
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emerge from trace reactivations. A directed mechanistic investiga-
tion of the rat posterior parietal cortex in this task, similar to our
efforts here, would be necessary to clarify the mechanisms and ori-
gin of history biases, and potential differences between the genera-
tion of contraction and serial biases in rodents and primates. More
in line with our reasoning, human TMS studies found behavioral
effects of memory reactivations when applied in the delay period, but
only when memories were still behaviorally relevant'. In contrast,
we show here that fixation-period TMS enhanced the behavioral
influence of previous, already irrelevant memories. Reactivations
may therefore not depend on behavioral relevance but rather on the
decaying dynamics of activity-silent mechanisms; a more advanced
decay of irrelevant memory traces may limit memory reactivations
in ref. . Reactivations also offer alternative explanations to TMS
effects in working memory that have previously been interpreted on
the basis of network disruptions®.

Our data support the idea that activity-silent and attractor-based
mechanisms are not orthogonal, alternative mechanisms, but that
they are interdependent mechanisms colocalized in the PFC. In turn,
their different timescales may associate them preferentially with
different types of memory processes. During active maintenance
of working memory, rapid persistent attractor-based activity may
encode memory, with slower activity-silent mechanisms providing a
supporting, stabilizing role'"'*". Note that although direct evidence
of this interplay in the delay period is problematic (Extended Data
Fig. 3), our approach of separately assessing delay period and IT1,
and their trial-by-trial correlation, indirectly supports this interplay
and may be the most direct evidence that can be accessed extra-
cellularly without resorting to detailed intracellular measurements
in awake monkeys. After the deactivation of attractor-based active
maintenance in the ITI, slowly decaying activity-silent maintenance
may underlie secondary, possibly involuntary memory traces, lead-
ing to serial biases in upcoming trials. Note that previous studies
have also proposed a central role for activity-silent maintenance for
an additional, intermediate type of memory: unattended, behavior-
ally relevant memories'**.. It was hypothesized that by resorting to
different mechanisms, unattended memories may be reserved and
protected while processing attended memories. Although our data
do not address the mechanism of unattended memories, in our
proposed framework, the close interplay between attractor-based
and activity-silent mechanisms does not allow unattended memo-
ries (activity-silent memories) to be protected from intervening
attended memories (attractor-based). This yields the prediction that
serial-bias-like patterns of interference™* between unattended and
attended memories should be observed in these experiments'**.

Our results have implications for the functional interpretation
of serial biases and their relation with the interplay of prefrontal
mnemonic mechanisms. First, enhanced serial biases after reacti-
vating latent traces from earlier memories are consistent with the
view that biases are the by-product of memory-supporting pro-
cesses. As previous computational studies have shown, long-lasting
cellular or synaptic mechanisms can enhance the stability of work-
ing memory retention (for examples, see refs. ''**¥), but with the
cost of across-trial interference of memories''*. Along these lines,
a recently found reduction in serial biases in patients with schizo-
phrenia*, anti-NMDA receptor encephalitis* or autism® may
reflect a reduced interplay of memory-supporting mechanisms.
Second, we see an active role of the PFC in generating serial biases,
rather than suppressing them as proposed by the proactive interfer-
ence literature?*. This discrepancy could be resolved if the role of
PFC was two-sided: (1) the PFC could generate biases either as a
by-product of stable memory retention'"' or actively, in circum-
stances in which past memory traces are adaptive for behavior’;
alternatively, (2) strong PFC activation would suppress maladap-
tive memory remnants in situations where biases are particularly
detrimental to behavioral performance. This dual PFC function is



ARTICLES

NATURE NEUROSCIENCE

supported in our modeling and TMS data by the contrasting effect
of weak and strong PFC activation on serial biases.

Our TMS experiment clarified our EEG results by demonstrat-
ing the role that the PFC plays in serial biases. Because we did not
concurrently acquire EEG data during the TMS study, we could not
directly measure the neural reactivation induced by the TMS pulse.
However, prior work has shown the reactivation of EEG memory
representations with TMS", albeit in different conditions (pulses
in the memory period targeted at parietal and occipital regions).
Intriguingly, serial biases for trials without TMS stimulation in
PEC-stimulation blocks were repulsive (Fig. 6b). We speculate that
this was due to suppressive long-lasting physiological effects in the
PFC that carried over from previous TMS-stimulated trials in the
block” (see Extended Data Fig. 10 for a phenomenological model
of this hypothesis). Future work involving more fine-grained TMS
intensities and carefully controlled block designs will be necessary
to further clarify these results.

We proposed a computational model that can parsimoniously
explain our data using STP in the synapses of a recurrent net-
work. STP has also been used in previous computational models
of interacting activity-based and activity-silent dynamics®'*"* and
of serial biases'>*'. Beyond previous modeling efforts, we explored
the mechanistic requirements of code reactivations before a new
trial, and we derived predictions whose validation conferred plau-
sibility to the model. Our findings do not unequivocally identify
this mechanism and we could have chosen another mechanism
with a long time constant to computationally implement our
hypothesis (for example, calcium-activated depolarizing currents',
depolarization-induced suppression of inhibition'' or short-term
potentiation®). Also, synaptic plasticity mechanisms linked to feed-
forward connections into the PFC* could conceivably play a role.
Still, several lines of evidence support the involvement of STP in
prefrontal function. First, there is explicit evidence for enhanced
short-term facilitation and augmentation among PFC neurons in
in vitro studies*>®. Second, extracellular recordings in behaving
animals cannot directly probe activity-silent mechanisms, but indi-
rect evidence for synaptic plasticity has been gathered from pre-
frontal activity correlations of rodents engaged in working memory
tasks*. Our study also follows this approach to seek evidence for
activity-silent stimulus encoding, but we applied it specifically at
time periods without firing-rate codes for task stimuli, thus unam-
biguously decoupling activity-silent from activity-based selectivity
(Fig. 3; Extended Data Fig. 3).

In summary, our data show that subthreshold traces of recent
memories remain imprinted in PFC circuits and bias behavioral
output in working memory in particular through network reactiva-
tions of recent experiences. Our findings suggest that the dynamic
interplay between attractor and subthreshold network dynamics in
the PFC supports closely associated memory storage processes: from
effortful memory to occasional reactivation of fading experiences.
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Methods

Behavioral task and recordings. Monkey behavioral task and recordings. Four
adult (>6 years old), male rhesus monkeys (Macaca mulatta) were trained in an
oculomotor delayed response task requiring them to fixate, view a peripheral visual
stimulus on a screen at a distance of 50 cm and make a saccadic eye movement to
its location after a delay period. During execution of the task, neurophysiological
recordings were obtained from the dIPFC. Detailed methods of the behavioral task,
training, surgeries and recordings, as well as descriptions of neuronal responses

in the task, have been previously published*”'~** and are only summarized briefly
here. Visual stimuli were 1° squares, flashed for 500 ms at an eccentricity of either
12° or 14°, indicated as degrees of visual angle. Stimuli were randomly presented

at one out of eight possible locations around the fixation point. A delay period
lasting 3 s followed the presentation of the stimulus, at the end of which the
fixation point turned off and a saccade terminating within 5° from the location of
the remembered stimulus was reinforced with a liquid reward (5° corresponds to
about 20° of arc on the circle of possible cues). Although fixation was maintained
through cue and delay periods, we denote the fixation period as the interval
between fixation onset and cue onset, when the only behavior expected was
fixation (fixation period, Fig. 1b). A fixed ITI of 3.1 s elapsed between fixation cue
extinction and the onset of the cue in the next trial (ITI, Fig. 1b). Eye position was
monitored using a scleral eye coil system in two monkeys and an ISCAN camera
in the other two. From two of those monkeys, we collected single-unit responses
from the dIPFC using tungsten electrodes of 1-4 MQ impedance at 1 kHz while
they were performing the task’’. Simultaneous recordings were obtained from
arrays of 2-4 microelectrodes spaced 0.2-1 mm apart. A substantial fraction of
neurons in this area showed tuned persistent delay activity during the mnemonic
delay period of the task (n=206 out of 822 neurons®*'~*). For decoding analyses,
we grouped those neurons in simultaneously recorded ensembles (total of

n=94 neural ensembles, 1-6 neurons per ensemble, Extended Data Fig. 1a). All
experiments were conducted in accordance with the guidelines set forth by the

US National Institutes of Health, as reviewed and approved by the Yale University
Institutional Animal Care and Use Committee, and by the Wake Forest University
Institutional Animal Care and Use Committee. Data collection and analyses were
not performed blinded to the conditions of the experiments. No statistical methods
were used to predetermine sample sizes, and we followed the customary practice of
testing n=2 monkeys for electrophysiology data and n =4 monkeys for behavioral
data. We note that the electrophysiology data were previously acquired and have
been used in other publications™'~*°.

Human participants and behavioral task. Thirty-five neurologically and
psychologically healthy volunteers with normal or corrected vision (EEG
experiment: n=15 (4 male), 21.27 +4.86 years (mean +s.d.); two additional
participants were tested, but aborted the EEG experiment with insufficient

trials; TMS experiments: n=20 (6 male), 29.86 years+9.55 years (mean +s.d.);
one additional participant was excluded before their MRI scan due to health
concerns) from the Barcelona area provided written informed consent and were
monetarily compensated for their participation, as reviewed and approved by

the Research Ethics Committee of the Hospital Clinic de Barcelona. During

both the EEG and TMS experiments, each participant performed two sessions
lasting approximately 1.5h. To perform behavioral and EEG analyses, we
concatenated the two sessions for each participant. Stimuli were presented on a
17" HP ProBook viewed at a distance of 65 cm, and we used Psychopy (v.1.82.01)
running on Python 2.7. The TMS study consisted of an initial experiment with
ten participants and a preregistered replication experiment (https://osf.io/rguzn/)
with ten more participants (Extended Data Figs. 7-9). For all three studies (one
EEG and two TMS experiments), we recruited independent participant pools.
For the fully randomized within-subjects design of our EEG task, condition-blind
data collection and analyses were not a critical issue. In the TMS study, the
experimenter could not be blinded to the location of the coil. No statistical
methods were used to predetermine sample sizes, but our sample sizes were similar
to those reported in relevant previous publications'****.

In each 1.5-h EEG session, participants completed 12 blocks of 48 trials
(except for one participant, who completed 12 blocks in one session and 9 blocks
in the second session). Each trial began with the presentation of a central black
fixation dot (0.5 0.5 cm) on a gray background. After 1.1s of fixation, a single
colored circle (stimulus, diameter of 1.4 cm) appeared for 0.25s at any of 360
circular locations at a fixed radius of 4.5 cm, randomly sampled from a uniform
distribution. In 66.67% of trials (a total of 768 trials per participant), the stimulus
was followed by a 1-s delay in which only the fixation dot remained visible. In the
remaining trials, the delay duration was either 3s (16.67% of trials, 192 trials per
participant) or 0s (16.67% of trials, 192 trials per participant). Trials with 0-s delay
were excluded from the analyses in this study. The change in the fixation dot color
(from black to the stimulus color) instructed participants to respond (response
probe). Participants responded by making a mouse click at the remembered
location. A transparent circle with a white border indicated the radial distance of
the stimulus, so the participant was only asked to remember its angular location.
After the response was given, the cursor had to be moved back to the fixation
dot to self-initiate a new trial. The total length of the ITI, defined as the time
between response probe and the next stimulus onset, was around 2.72 s (median,

95% confidence intervals (CIs) =[2.11s, 4.16 s]). Participants were instructed to
maintain fixation during pre-stimulus fixation, stimulus presentation and delay,
and were free to move their eyes during the response and when returning the
cursor to the fixation dot. Colors (one out of six colors with equal luminance) were
randomly chosen with an equal probability for each trial.

Stimuli and the trial structure in the TMS task were similar to the EEG task,
except for the fixation period duration (0.65), screen background (white), stimulus
color (black) and response probe color (red). At the end of the fixation period
(16.7 ms before stimulus onset), a single TMS pulse was applied in half of the vertex
trials (TMS or sham trials, randomly interleaved) and in two-thirds of prefrontal
trials (weak or strong TMS or sham trials, randomly interleaved). See TMS details
below. Only delays of 1s were used in this experiment. Participants completed 4
blocks of 90 (vertex) and 4 blocks of 130 (PFC) trials within each session. In the
first TMS study, these eight blocks were randomly shuffled for each session. In the
replication TMS study, we successively alternated vertex and PFC blocks within
each session, and the two sessions of a given participant started alternately with
each area in a counterbalanced design.

EEG recordings and preprocessing. We recorded EEG data from 43 electrodes
attached directly to the scalp. The electrodes were located at the following modified
combinatorial nomenclature sites: Fpl, Fpz, Fp2, AF7, AFz, AF8, F7, F3, Fz, F4,
F8, FT7, FC3, FCz, FC4, FT8, A1, T7, C5, C3, Cz, C4, C6, T8, A2, TP7, CP3, CPz,
CP4, TP8, P7, P3, Pz, P4, P8, PO7, PO3, POz, PO4, PO8, O1, Oz and O2. Sites
were referenced to an average of mastoids Al and A2 and re-referenced offline to
an average of all electrodes. We further recorded horizontal electrooculography
data from both eyes, vertical electrooculography data from an electrode placed
below the left eye and electrocardiography data to detect cardiac artifacts. We
used a Brainbox EEG-1166 EEG amplifier with a 0.017-100 Hz bandpass filter and
digitized the signal at 512 Hz using Deltamed Coherence software (v.5.1).

EEG data were preprocessed using Fieldtrip (v.20171231) in Matlab R2017b
and R2019a. We excluded outlier trials in which variance or kurtosis across
samples exceeded four standard deviations from mean variance or kurtosis
over trials, respectively. To reduce artifacts in the remaining data, we ran an
independent component analysis on the trial-segmented data and corrected the
signal for blinks, eye movements and electrocardiogram signals, as identified by
visual inspection of all components. Data were Hilbert-transformed (using the
FieldTrip function ft_freqanalysis.m) to extract frequencies in the alpha band
(8-12Hz), and total power was calculated as the squared complex magnitude of the
signal. Finally, we excluded trials in which log-normal alpha power at any electrode
exceeded the time-resolved trial average of log-normal alpha power by more than
four standard deviations, and trials in which the time-averaged variance across
electrodes exceeded the mean variance over trials by more than four standard
deviations (to increase the stability of trial-wise decoding predictions for different
randomly chosen training sets). In total, we rejected an average of 3.95+1.07%
(mean =s.d.) of trials per participant. Excluding rejected trials and trials with
0-s delay, we used 914.33 +28.94 trials per participant. To concatenate data from
the two sessions for the same participant, we normalized the alpha power of each
session for each electrode separately.

TMS study. Stimulation was performed in the TMS study using a Magstim Rapid 2
machine with a 70-mm figure-of-eight coil. TMS target points were located using
a BrainSight navigated brain stimulation system that allowed coordination of

the coil position based on the structural MRI scan of each participant. A region
of interest in the right dIPFC (MNI152 coordinates x =40, y=34, z=16) was
defined using a NeuroSynth” term-based meta-analysis of 53 functional MRI
studies associated with the key phrase ‘spatial working memory’ (Supplementary
Fig. 1 and Supplementary Data). This mask was transformed into the structural
MRI space of each participant. Vertex target points were defined using the 10-20
measurement system. Stimulator intensity, coil position and coil orientation were
held constant for each participant for the duration of each session. To mask the
sound of TMS coil discharge, we had participants listen to white noise through
earphones for the duration of the session. White noise volume was selected

based on the threshold of the participant for detecting a TMS click using the
staircase method (two up, one down). Stimulation intensity was determined by
the individually defined RMT. We applied two different TMS intensities at 70%
RMT (weak-TMS, 24.5-41.5% (min-max) of stimulator output) and 130% RMT
(strong-TMS, 45.5-76.5% of stimulator output) depending on the trial (see main
text). To reduce the number of trials per session, we applied strong-TMS at the
vertex in the original study, but weak-TMS for the replication study (preregistered
at https://osf.io/rguzn/; Extended Data Figs. 9 and 10). The stimulation parameters
were in accordance with published TMS guidelines™. In a post-experiment
debriefing session, we collected information about the subjective experience of
the participants. Many participants (13 out of 20) reported facial muscle twitching
in the dIPFC blocks. This is an unlikely explanation for the effects observed

in Fig. 6 because (1) twitching is expected to increase with TMS intensity, but we
instead observed a nonlinear dependency in our effect (Fig. 6b), and

(2) behavioral performance in our task as measured by the precision of the
responses was not modulated by the TMS intensity in the dIPFC blocks (linear
mixed model: 2 ~ intensity + (1|subject), P> 0.5), which suggests that our
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reported intensity-dependent effect (Fig. 6b) was not the result of a general
behavioral impairment caused by facial twitching.

Serial bias analysis. Human study. For each trial, we measured the response

error (6,) as the angular distance between the angle of the presented stimulus and
the angle of the response. To exclude responses produced by guessing or motor
imprecision, we only analyzed responses within an angular distance of 1radian and
a radial distance of 2.25 cm from the stimulus. Furthermore, we excluded trials in
which the time of response initiation exceeded 3 s, and trials for which the time
between the response probe of the previous trial and the stimulus presentation of
the current trial exceeded 5s. On average, 2.99 +4.51% (mean +s.d.) of trials per
participant were rejected.

We measured serial biases as the average error in the current trial as a function
of the circular distance between the target locations of the previous and the current
trial (6,) in sliding windows with size 7/3 and in steps of 1/20 radians, and steps
of /100 radians for Fig. 2a (note that for easier interpretability, all figures depict
values in angular degrees). To increase power and correct for global response
biases, we calculated a ‘folded’ version of serial biases as follows*. We multiplied
trial-wise errors by the sign of 6,: &, = 6, x sign(64), and used absolute values
of ;. Positive mean folded errors should be interpreted as attraction toward the
previous stimulus and negative mean folded errors as repulsion away from the
previous location. For a scalar estimate of differences in serial bias curves (Fig. 5f),
we averaged folded errors for close 6, distances (between 0 and =/2 radians).

Monkey study. In contrast to the human study, the stimulus distribution was
discrete for all the monkey experiments. On each trial, the subject was cued to one
of eight possible cue locations equidistant on a circle. This restricted the minimal
angular distance between cues in two consecutive trials to be /4 radians. To
obtain a finer resolution to calculate serial biases, we capitalized on the response
variability on each trial: we computed 6, as the distance between the stimulus of
the current trial and the response of the previous trial (instead of the stimulus of
the previous trial). Similar methods to the human study were used, except for Fig. 1a,
where we used smaller sliding window sizes (7/10 in steps of /100 radians),
which was essential to capture the thinner attractive serial bias profile in monkeys
(Fig. 1a). Specific differences in our monkey and human serial bias curves (Figs. 1a
and 2a) may be due to the discrete stimulus distribution (eight possible locations)
that we used for monkeys, in contrast to the continuous distribution used in our
human experiments. Indeed, studies with larger samples and continuous stimulus
distributions have reported behavioral biases in monkeys more consistent with

the human literature”>*. For all our serial bias curves, x axis coordinates mark the
central value of the corresponding sliding window.

Statistical methods. Data were analyzed using custom scripts in Python 2.7
(monkey and TMS data) and in Python 3.7.4 (human EEG data). Details of
statistical methods are tabulated in the Nature Research Reporting Summary
available online. Unless stated otherwise, all hypothesis tests were two-tailed
(permutation tests or bootstrap hypothesis test, n=10°¢) and CI are at [2.5, 97.5]
percentiles of a bootstrapped distribution. Using bootstrap distributions, we avoid
assuming normality for our statistical tests. One exception was the linear model
used for TMS data analyses, in which normality was assumed. Supplementary Fig. 2
shows the distribution of residuals of this model and the corresponding qqplot.
There was a significant deviation from normality in extreme values. This did not
compromise our statistical inference because of the large sample size (n=18,299
trials)* and because the interaction of interest was confirmed by model-free
analyses (Fig. 6; Extended Data Figs. 7-9).

To test the effect of TMS on serial biases, we fit a linear mixed-effects model
using the R function Ime®. In particular, we modeled trial-wise behavioral errors
0, as a linear model with interaction terms for coil location (PFC versus vertex),
TMS intensity (strong-TMS, sham and weak-TMS) and the sine of 6, (prev-curr),
which approximates the expected dependency of 6, on 6, in the presence of
serial biases (0, o sin(64)). We incorporated the nonlinear dependency of serial
bias on stimulation intensity that our model simulations predicted by using -1,

0 and 1 for strong-TMS, sham and weak-TMS, respectively. In one model, we
used instead the nominal percent of RMT TMS intensity used (70, 0 and 130,
respectively) for comparison (Fig. 6b). We accounted for subject-by-subject
variability by including random-effect intercepts and random-effect
coefficients of prev-curr. The full, three-way interaction model was as follows:
6, ~ coillocation x intensity x prev-curr + (1 -+ prev-curr|subject)

Decoding stimulus information. Monkeys. Population decoder. For each recorded
ensemble, we decoded stimulus #; in trial j by modeling it as a linear combination
of the spike counts n;; (i = 1...k) of k simultaneously recorded neurons, computed
in sliding windows of 0.5s and steps of 0.1 s during that trial (in all decoding time
courses depicted in figures (monkeys and humans), time (x axis) coordinates mark
the central value of the corresponding sliding window):

k k
cos(6) ~ 1+ Zﬁi“ij and sin(6;) ~ 1+ Za),-n,-j
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For each set of neurons, we trained two sets of weights {#;} and {®;} on 80%
of randomly selected trials and tested in the remaining trials. We applied Monte-
Carlo cross-validation with 50 random splits to obtain angle estimates 6;. We
obtained a measure of error (err) by averaging across splits the mean absolute error
(|9j — 9j|) in each split.

Accuracy of ensembles: distance from shuffle. To establish the significance of
decoding accuracy (z), we compared the decoding error (err) for each ensemble to
the distribution of decoding errors in 1,000 shuffled stimulus sequences (err,). By
shuffling the list of stimuli presented in the particular recording of each ensemble,
we maintained the characteristics of the distribution (for example, unbalanced
distribution of stimuli), but effectively destroyed correlations between stimuli and
neural activity.

err — mean(err;)

= s.d.(err;)

In Fig. 1c and Extended Data Fig. 1b, we separately tested ensembles that had
the strongest and weakest decoding accuracy in the delay period by obtaining z
from spike counts in the delay period and classifying the ensembles based on z:
ensembles within the top tertile (high-decoding delay ensembles) and those in the
bottom tertile (low-decoding delay ensembles).

Accuracy of single trials: leave-one-out decoder. To measure stimulus information
on a trial-by-trial basis, we used leave-one-out cross-validation (Fig. 5a-c). We
regressed the f; and w; weights in all trials, except the one left out for testing. For
these analyses we computed spike counts in windows of 1s in steps of 50 ms.

Humans. Linear decoder. EEG alpha power is known to decrease in occipital sites
contralateral to attended locations and for locations being actively maintained

in working memory***'-**. We used this feature to decode the angular position

of the stimulus from the distribution of alpha power over all 43 electrodes. We
trained the decoder on the stimulus label of the previous trial and decoded this
information throughout the previous and current trial. Trial-wise alpha power
for each electrode was modeled as a linear combination of a set of regressors
representing the stimulus location in the corresponding trial, U = WM, where U
isa Jx K matrix of alpha power measured at electrode j in trial k, M is the Nx K
design matrix of values for regressor # in trial k, and W is the Jx N weight matrix,
mapping the weight for regressor # to electrode j. U and M were given by the
experiment, while W was fitted using least squares.

The design matrix M is a set of eight regressors M, representing expected
“feature activations™ for feature # in trial k. The value of regressor M,, in trial k
was determined as [sin(nr/8 — sy1/8 4 1/2)” |, where s, = [0 ... 7] indicates which
one of eight angular location bins (width /8 radians) included the stimulus shown
in trial k.

As in the monkey analyses, we measured single-trial stimulus representations
using leave-one-out cross-validation, ensuring an equal number of trials from each
location bin in the training set (U; and M,). We estimated the weight matrix W and
the design matrix Mj for the left-out trial k, as follows:

W= oM (M)

M= (WTW) WU

For each trial and time point, we repeated this analysis 100 times with
randomly chosen training sets (except for the temporal generalization matrix,
for which ten repetitions were run, Fig. 2b), and averaged M over all repetitions.
Finally, we estimated the predicted angle &y as the direction of the vector sum of
feature vectors with length M, pointing at angular location bin centers b, = nm/8
(n=0...7). Trial-wise decoding strength was then defined as cos (Hk — Gk). To
correlate the decoding strength with behavioral biases (Fig. 5d-f), we increased
the stability of trial-wise measures by temporal averaging over moving 200-ms
windows (x axis ticks in Fig. 5f are centered at window centers).

Cross-temporal decoding. To explore the temporal generalization of the mnemonic
and the response code over time, we trained decoders in independent time
windows of the previous and current trial, and tested them in all time points

of consecutive trials (from 0.25s to 1.25s after previous stimulus onset (Fig.

2¢, left), —0.25 s to 0.25s after previous response (Fig. 2¢, middle), and —1.25s

to 0.25s after the stimulus onset of the current trial (Fig. 2c, right)). For the
temporal generalization matrix (Fig. 2b), we averaged training and test data over
independent windows of 50 samples (~97.77 ms). High-resolution time courses of
mnemonic and response code (Fig. 2c) were obtained by training the decoder on
averaged data from 0.5s to 1 after previous stimulus onset and —0.25s to 0.25s
relative to the response time (dashed lines in Fig. 2b), respectively, and by testing
on averaged data from five samples (~9.77 ms) through consecutive trials.

Preferred location. We computed the preferred locations of each neuron. Similar
to ref. °, the preferred location was determined by computing the circular mean of
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the cue angles (0-315°, in steps of 45°) weighted by the mean spike count of the
neuron over the delay period (3s) following each cue presentation.

Cross-correlations. Dataset. For the estimation of functional connectivity, we
estimated cross-correlations by computing the jittered cross-covariances® of spike
counts from simultaneously recorded neuron pairs, whose preferred locations were
separated by a maximum of 60° (1 =67). We included pairs of neurons recorded
from the same electrode (n=21) and pairs recorded from different electrodes
(n=46). For each pair, we selected those trials in which the presented cue fell
within the preferred range (pref, within 40° from either preferred locations) or
outside the preferred range (anti-pref, all the other trials). We discarded those trials
without at least one spike for each neuron in the pair.

Jittered cross-covariance. We used the Python function scipy.signal.correlate to
compute cross-covariances between spike trains of simultaneously recorded pairs.
Spikes were counted in independent windows of 10 ms*’*°. For each trial, 1,000
jittered cross-covariances were computed as follows®. We shuffled the spike counts
within non-overlapping windows of 50 ms and computed cross-covariance for each
of these jittered spike counts. This captured all the cross-covariance caused by slow
dynamics (>50ms) but destroyed any faster dynamics. Finally, we removed the
mean of these jittered cross-covariances from the cross-covariance of each trial,
ending up with correlations due to faster dynamics (<50 ms). We considered the
magnitude of the central peak of the cross-covariance in our analyses by averaging
3 bins (+1 bin from the zero-lag bin). For the time-resolved cross-correlation
function (Fig. 3¢,d), we repeated this process for sliding windows of 1s and steps of
50ms, and averaged across trials and neuronal pairs.

Putative exc and inh interaction. Because changes in connectivity strength

(our hypothesis for activity-silent mechanisms) affect inversely exc peaks and

inh troughs of cross-correlations*, we separately analyzed these two types

of interactions. Similar to refs. *>*, based on the average central peak of the
cross-correlation function in the entire trial [-4.5s, 2.5s], we classified each pair
into three subgroups: (1) those with a positive peak for both pref and anti-pref
trials were classified as putative exc interactions, (2) those with a negative peak for
both pre and anti-pref trials were classified as putative inh interactions and (3) we
discarded those with an inconsistent peak sign between pref and anti-pref trials.

In total, we analyzed the cross-correlation time course of #n =47 pairs of neurons
(n=27 exc and n=20 inh; from different electrodes n=20 exc and n=13 inh). We
confirmed that our results held when analyzing only pairs from different electrodes
(Fig. 3¢; exc: P=0.01, n=20; inh: P=0.04, n=13, one-sided permutation test).

Delay rate versus ITI cross-correlation analyses. As shown in Fig. 3¢, we sought
evidence for an interplay between attractor and subthreshold network dynamics

in the PFC. To this end, we computed the trial-by-trial correlation between the
cross-covariance peak (see above) in the ITI—at a time point when there was no
firing-rate tuning (activity-silent period, Fig. 3d)—and the mean firing rate of the
two neurons at the end of the preceding delay period (last 2's, delay-fr, Fig. 3¢)

for exc interaction pairs under the pref and anti-pref condition (see above). For
each pair, we obtained demeaned values for each trial by subtracting the mean
firing rate and the mean cross-covariance peak across all trials, respectively. This
allowed us to compute the correlation based on trial-by-trial measurements of all
pairs together (n=27) to increase statistical power. Error bars were then computed
based on a bootstrap approach on all trials for all pairs. A local activity-dependent
subthreshold mechanism for ITI memory traces predicts that for pref trials, but not
for anti-pref trials, firing-rate variations in the delay period determines the degree
of latent variable loading (cross-covariance peak) in the ITT (Fig. 3e).

Simulating bump reactivation. We used a previously proposed computational
model*** to study serial dependence between two consecutive trials. The model
consists of a network of interconnected 2,048 excitatory and 512 inhibitory

leaky integrate-and-fire neurons®”. This network was organized according to a
ring structure: excitatory and inhibitory neurons were spatially distributed on a
ring so that nearby neurons encoded nearby spatial locations. All connections
were all-to-all and spatially tuned, so that nearby neurons with similar preferred
directions had stronger than average connections, while distant neurons had
weaker connections. Inhibitory-to-inhibitory connections were untuned. Network
parameters were taken from ref. ¢’ except for the following:

GEE,AMPA =0.1 nS, GEI.AMPA =0.192nS
Ggg,NMpa = 0.421S, Ggr,nmpa = 0.49nS

GII,GABA = 0.7413 nS, GIE‘GABA =0.9163 nS

Zext.1 = 5.8 1S, gext £ = 5.915nS

Jin = 71,05 = 18° ,Ji = Jii = 2.2,05 = o = 32°

where G values are the maximum conductances of the corresponding connections
(e.8.» Grg, ampa is the total maximum conductance of AMPAR-mediated local
excitation onto an excitatory neuron), g.,,; and g.,,, are the maximum conductance
of external Poisson inputs to an excitatory or inhibitory neuron, respectively, and
J* and o values define the amplitude and width of corresponding connectivity
footprints, respectively. See ref. ¢’ for more details.

STP dynamics. Simulation of activity-silent mechanisms during the inter-trial
period was done by adding two more variables x and u, as described in refs. >, to
excitatory presynaptic neurons as follows:

dx 1-x

a: . —ux&(t—tsp)

du U—-u
T + U1 —u)8(t — top)

With t,, marking all spike times and (t) being the Dirac delta function. We used
the parameters U = 0.2, 7, = 200ms, 7, = 1, 500 ms. The effective conductance
of each excitatory synapse was then g x ux x, with g being the corresponding
maximum conductance parameter (see above). These STP dynamics affected only
AMPA-receptor-mediated recurrent connections in the network. In a separate

set of network simulations (not shown), we also included STP in inhibitory
connections in the network (same parameters as indicated above) and we found
that we could obtain a similar pattern of serial bias modulations as shown in Fig. 4d.
This shows that our results are not specifically dependent on whether inhibitory
connections present facilitation dynamics or not.

Stimulation and behavioral readout. External stimuli were fed into the circuit

as weak inputs (0.25nA) to neurons selective to the stimulus as previously
described”’. Each simulation of our computational model consisted of two trials
run in sequence: a first stimulus of 250 ms, a first delay period of 1,000 ms, a
network resetting input (nonspecific current —0.261 nA, duration 300 ms), an ITI
of 1,300 ms, a second stimulus (250 ms) and a second delay period of 1,000 ms.
The first and second cue stimuli were independently drawn randomly from 360
uniformly distributed angular values, and only the network readout of the second
trial was analyzed to obtain a ‘behavioral’ readout. The readout was obtained
with a bump-tracking procedure: starting at cue presentation, the instantaneous
network readout was derived as the angular direction of the population vector of
single-neuron firing rates (computed in windows of 250 ms, sliding by 100 ms)
considering the +100 neurons surrounding the readout estimated in the previous
time step. The instantaneous readout was iteratively derived to track the center
of the bump (thus ignoring possible elevated activity extending from the fixation
period), and the final behavioral output was defined as the readout in the last
250 ms of the trial. Serial bias was calculated by measuring single-trial errors
(behavioral readout minus target location) in relation to the angular distance

6, between the first and second stimulus locations, as described above for
experimental data.

Consecutive trials and bump reactivation. Reactivation of the previous-trial
stimulus during the reactivation period (300 ms before the second stimulus
onset) was accomplished by stimulating all excitatory neurons with a nonspecific
external stimulus”*. This stimulus exponentially increased with a rate of a=10s""
as B(1 — e~(t=0)), with B being the reactivation strength and t, the time of onset
of the stimulus. The reactivation strength was weak (# = 0.17 nA) or strong

(B = 2.9nA).

Rate and synaptic tuning. For each simulation shown in Fig. 3a,b, we computed the
firing rate (r) and synaptic (s = u x x) tuning by computing the difference between
neurons within (£50°) and outside (180 +50°) the previous bump location for both
measures.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
All data that support the findings of this study are available at https://github.com/
comptelab/interplayPFC.

Code availability
The custom code used in this study is publicly available at https://github.com/
comptelab/interplayPFC.
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at ITI (two-sided binomial test at p=0.05, with n=94 and n=27 ensembles, for ‘all ensembles’ and 'highest delay code’, respectively). Error bars are
bootstrapped +s.e.m. ¢, across-ensemble Pearson correlation between delay decoding accuracy (averaged in the entire delay) and decoding accuracy at
different time points (two-sided p-values: 6.5e-30, 0.87, 0.035, n=94 ensembles). The ensembles with strongest delay code also had stronger decoding
during reactivation, demonstrating the neural association between delay representations and reactivations despite absent code in the ITI. Error bars
denote +s.e.m. computed with a bootstrap procedure. d, Individual ensemble values from ¢, orange (Pearson correlation, two-sided p=0.035, n=94

ensembles).
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Extended Data Fig. 2 | Noise correlation between pairs of neurons is negative at reactivation, as predicted by the attractor model. Bump-attractor
dynamics are characterized by negative pairwise noise correlations for cues presented between the preferred locations (within pref) of the two neurons,
but not for other cues (outside pref) 6. a, Periods used in noise correlation analyses: early (activity-silent), and late fixation (reactivation; n=94 ensembles,
zoom-in of Fig. 1c). Error shading, bootstrapped 95% C.1. b, In the computational model (n=1,000 independent simulations), bump reactivations from
subthreshold traces are characterized by negative noise correlations only during reactivation for within-pref trials, following the nonspecific input drive
(Fig. 4). ¢, Noise correlations of PFC pairs with dissimilar preferred angles (60° < A8 < 120°, n=34 pairs) were lower in late than in early fixation for
within-pref trials (bootstrap test, p=0.0001, n=34, Cohen's d=0.61). d, On average, lower noise correlations occurred only during reactivation and in
within-pref trials (ANOVA trial condition x time point, F(4)=2.5, p=0.06, n=34). For within-pref trials, noise correlations differed between early and late
fixation (bootstrap test, p=0.0001, Cohen's d=0.61, n=34), being negative in late (bootstrap test, p=0.035, Cohen's d=-0.32, n=34), but positive in early
fixation (bootstrap test, p=0.018, Cohen's d=0.37, n=34). Correlations were positive in outside-pref trials both during late and early fixation (bootstrap
test, p=0.024 and p=0.06, respectively), with no significant difference (two-sided bootstrap test, p=0.93, n=34). In addition, negative noise correlations
diminished when using the previous saccade location rather than the previous stimulus as reference (paired bootstrap test, p=0.005, Cohen’s d=-0.47,
n=34), suggesting that the bump diffused only during the delay period, but not after the saccade 6. Unless stated otherwise, all bootstrap tests were
one-tailed in the direction of the model predictions in b. All error bars indicate +s.e.m.
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pref and anti-pref trials based on current stimulus (instead of previous, Fig. 3). Note that these are different trials (no need to be consecutive), so exc
(n=33 pairs) and inh (n=21 pairs) might differ from Fig. 3. a, Left, cross-correlation peak selectivity emerged and was sustained in the delay period (left,
CCSl as in Fig. 3, computed in centered 500-ms windows sliding in steps of 50 ms) and consisted in enhanced central peaks (troughs) for exc (inh)
following a preferred stimulus. Color bars mark the periods where the average CCSl is different from O (bootstraped 95% C.1.) Right, cross-correlation
averaged over 0.5-3.5 s. Zero-lag correlation for pref and anti-pref are different in exc (p=0.03, n=33, two-sided paired bootstrap test) and inh (p=0.01,
n=21, two-sided bootstrap test) conditions. b, Firing rate selectivity (pref - anti-pref) also emerges robustly in the delay period for neurons in exc and inh
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when there is no firing rate selectivity (Fig. 3f), gets around this problem. Gray shading marks the stimulus presentation. In all panels, error-bar shadings
indicate +s.e.m.

71. de la Rocha, J., Doiron, B., Shea-Brown, E., Josi¢, K. & Reyes, A. Correlation between neural spike trains increases with firing rate. Nature 448, 802-806 (2007).
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Extended Data Fig. 4 | In a dataset with unpredictable stimulus-onset time, previous item representations were not reactivated in the pre-stimulus
period. We conducted the same analysis as in human EEG (Fig. 2) in a previously published dataset (n=15 independent subjects for all panels; for
experimental details, please refer to the original publication, ref. **) with unpredictable fixation period durations (range 0.7 s-1.3 s). Decoding analyses
were applied separately for data aligned to the onset of fixation (Fn, graded shading indicates range of possible stimulus onset times, upper panels) and
aligned to the onset of the stimulus (Sn, graded shading indicates possible fixation onset times, lower panels). a, Tuning to previous-trial location (decoder
trained in delay, 0.5s - 1.0s after stimulus onset) during previous-trial delay (left, stimulus aligned) vanishes in current-trial fixation (right, fixation

onset aligned). No reactivation occurs. b, Average tuning reconstruction at different epochs for the delay decoder, indicated in a. ¢, Serial dependence
separating trials with high (red curve, top quartile) from all other trials’ (black curve) decoding accuracy in early fixation (orange in a). Unlike in an
experiment with predictable stimulus onset (Fig. 5), serial bias did not differ as a function of decoding strength. d, Difference in serial biases (Methods)
between high-decoding and other trials were not significant at any time point in fixation. The black triangle marks the center of 0.2 s decoding window for
the split in . e-h, Parallel results were obtained when the analyses of panels a-d were run on data aligned to the time of stimulus onset instead of fixation
onset. Ind and h, time courses were smoothed using a squared filter of 5 samples. Periods with significant decoding in a,e are marked with black horizontal
bars, indicating p<.001 in a two-sided bootstrap test. Shading indicates 95% C.I. in a,d,eh, and +s.e.m. in b,cf.g.
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Extended Data Fig. 7 | The effect on serial biases of targeting dIPFC with TMS diminishes in the course of the experimental session. Serial bias plots
averaged across n=20 independent subjects for trials with TMS applied in vertex (a) and PFC (b), and difference between serial biases computed for sham
and weak-tms trials in vertex (black) and in PFC (red) blocks (c). Same analyses as in Fig. 6, but (top) analyzing trials from the full session, (middle) first
half session (225 trials, replication of Fig. 6) and (bottom) last half session (225 trials). The behavioral impact of PFC TMS stimulation declined through
the session, as if subjects desensitized (prev-curr x TMS intensity X session-half t;,,5; = -2.38, p = 0.017. Methods, Linear Mixed Models). Serial biases were
modulated by TMS in PFC, but not in Vertex (prev-curr x TMS intensity X coil location, t,g,,, = 2.21, p = 0.027. For dIPFC: prev-curr X TMS intensity, tos, = 2.13,
p = 0.032. For Vertex: t;;,, = 0.03, p = 0.97. Methods, Linear mixed models) when analyzing the full session, and analyzing only the first half session

(ty133 = 2.51, p = 0.011). x-axis coordinates mark the central value of windows (/2 radians, sliding by /30 radians) used to calculate behavioral biases.
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Extended Data Fig. 8 | Consistent fixation-period single-pulse TMS effects on serial biases: first experiment. Serial bias plots averaged across n=20
independent subjects for trials with TMS applied in vertex (@) and PFC (b), and difference between serial biases computed for sham and weak-tms trials
in vertex (black) and in PFC (red) blocks (¢). Same as Extended Data Fig. 6, but only analyzing data from the original study (n=10 subjects). Similarly to
when pooling both the original and replication studies together, the behavioral impact of PFC TMS stimulation declined throughout the session, however
not significantly (prev-curr x TMS intensity X session-half te,,, = -1.73, p = 0.08. Methods, Linear Mixed Models). Serial biases were modulated by TMS in
PFC, but not in Vertex (ts;0s = 1.92, p = 0.05) when analyzing the full session, and analyzing only the first half session (355, = 2.59, p = 0.009, Methods).
x-axis coordinates mark the central value of windows (xt/2 radians, sliding by x/30 radians) used to calculate behavioral biases.
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Extended Data Fig. 9 | Consistent fixation-period single-pulse TMS effects on serial biases: replication experiment. Serial bias plots averaged across
n=20 independent subjects for trials with TMS applied in vertex (a) and PFC (b), and difference between serial biases computed for sham and weak-tms
trials in vertex (black) and in PFC (red) blocks (c). Same as Extended Data Fig. 6 and 7, but only analyzing data from the pre-registered (https://osf.io/rguzn/)
replication study (n=10 subjects). Similarly to the original experiment, the behavioral impact of PFC TMS stimulation declined throughout the session,
however not significantly (prev-curr x TMS intensity x session-half te;,s = -1.63, p = 0.1. Methods, Linear Mixed Models). Similarly to the original study,
serial biases were more strongly modulated by TMS in PFC than in Vertex, however not significantly (ts;,o = 112, p = 0.25) when analyzing the full session
and the effect was stronger when analyzing only the first half-session (t,¢;s = 1.91, p = 0.06, Methods). x-axis coordinates mark the central value of
windows (&t/2 radians, sliding by n/30 radians) used to calculate behavioral biases.
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Extended Data Fig. 10 | A phenomenological model of our hypothesis on how long-term physiological effects of single TMS pulses affect serial bias
curves in event-related experimental sessions. Our TMS results show a difference between the effects of sham stimulation at the vertex and sham
stimulation over dIPFC (Fig. 6). We interpret this baseline difference as the possible effect of long-term physiological alterations by single pulses 58 (but
see ref. 72) that carry over from “strong-tms"” trials to “no-tms" trials. We explicitly implemented this interpretation in the following way: we generated
trial-by-trial responses biased depending on the sequence of stimuli according to a given baseline serial bias curve (a, “Vertex” condition where TMS is
ineffective). In the “PFC" condition the serial bias strength changed depending on TMS conditions: in “weak-tms” trials the pulse had the acute effect

of increasing the bias strength momentarily by an additive factor (3 times the baseline bias strength), in “strong-tms” trials the effect of the pulse was
chronic: the bias changed with a negative additive component (equal in magnitude to the baseline strength), which decayed slowly through subsequent
trials (10% decay/trial). When collapsing together “responses” obtained on the basis of this model through a sequence of randomly selected “no-tms”,
“weak-tms"” and “strong-tms" trials, serial bias curves showed the pattern observed experimentally, where sham (“no-tms") trials show repulsion in the
“PFC" condition (panel b) and not in the “Vertex” condition (panel a). The difference of serial bias curves for “weak-tms" and “no-tms"” then showed the
modulation clearly in “PFC" and not in “Vertex" (panel ), as seen in the data (Fig. 6).

72. Romero, M. C., Davare, M., Armendariz, M. & Janssen, P. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat. Commun. 10, 2642
(2019).
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

>
~
Q

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

X

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

X

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection EEG recordings used Deltamed Coherence Software version 5.1. Behavioral experiments with humans were programmed in Python 2.7
using Psychopy version 1.82.01.

Data analysis Data were analyzed using custom scripts in Python 2.7 (monkey and TMS data) and in Python 3.7.4 (human EEG data). EEG data was pre-
processed using Fieldtrip (version 20171231) in MATLAB R2017b and R2019a. The custom code used in this study is publicly available at
https://github.com/comptelab/interplayPFC.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All data that support the findings of this study are available at https://github.com/comptelab/interplayPFC.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For the analysis of monkey data we were not able to predetermine sample sizes because this was data acquired previously (Constantinidis et
al 2001). For human data, sample sizes were based on relevant prior literature. In the case of the EEG study, we matched the sample size
(n=15) to the one used in a previous study that successfully decoded memory contents from EEG in an identical task (Foster et al. 2015). In
the case of the TMS study, we predetermined the sample size (n=10) considering that TMS-induced memory reactivations had been shown in
a previous study with 6 participants (Rose et al. 2016). We validated the results in a replication experiment with the same sample size (n=10).

Data exclusions  * No monkeys were excluded from the analysis. In the EEG study, one participant aborted because of physical discomfort. Another participant
repeated the session on a different day because they aborted their first session with too few trial blocks. For this participant we only analyzed
session 2. In the TMS study, one participant dropped the study when acquiring her MRI because she suspected pregnancy.

* For neural data analyses, we excluded neurons without significant tuned delay activity. This was because of the hypothesis of our study (we
wanted to explore the interaction between persistent and activity-silent mechanisms) and was predetermined in this study, as in other
previous studies with this dataset (Constantinidis et al 2001; Compte et al. 2003; Wimmer et al. 2014).

* For behavioral analyses, we excluded trials where behavioral reports were too far from the target to remove guess trials that may have not
engaged working memory. For monkeys, this was done directly at acquisition time and could not be predetermined for this study (criterion
report more than 20 degrees away from target). For humans, we excluded trials with responses further than 1 radian from targets in the
angular direction and further than half the radius (2.25cm) in the radial direction.

* For EEG analyses, we excluded outlier trials based on the voltage trace variance and alpha-power variance over each session. This is
customary practice to remove EEG artifacts. Specific thresholds were set at the time of pre-processing of the data prior to final analyses.

Replication We designed a replication study for the TMS experiment, to test the bias-enhancing effects of weak TMS stimulation and the disappearance of
the effects as the session progressed. The methods, hypotheses and even the analysis codes for this replication study were pre-registered
(https://osf.io/rguzn) prior to acquiring the data. Methods were applied as literally pre-determined and the results were parallel to our
previous findings, validating our results. In the manuscript we report the aggregated data (participants were independent for the 2 studies), as
well as the individual data for each experiment (supplementary data).

Randomization  Our study had a within-subject design, so randomization of participants across groups is not relevant for the study. Conditions of interest were
typically randomized in our design: cue locations were pseudo-randomly chosen in monkey studies, and both cue locations and delay lengths
were random in human EEG studies. For TMS experiments, cue locations and TMS intensity were random during experimental blocks, and
TMS coil location was kept constant in each block and alternated from block to block, the order being counterbalanced in the 2 sessions of the
same participant.

Blinding Blinding was not necessary in regard to participants because this was a within-subject design with randomized task contingencies. For the
TMS study, the experimenter could not be blind to the location of the coil.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies X[ ] chip-seq
Eukaryotic cell lines & |:| Flow cytometry
Palaeontology |Z| |:| MRI-based neuroimaging

Animals and other organisms

Human research participants

XOOXKXX &
OXX O OO

Clinical data

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Monkey subjects were four adult male rhesus macaques. Two of the animals were tested 20 years ago, when age reporting was
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Laboratory animals

Wild animals
Field-collected samples

Ethics oversight

not customary. From their reported weights (Constantinidis et al. J. Neurosci. 21:3646, 2001) they were fully grown adults, so we
can estimate the age at more than 6 years old. The ages of the other two animals reported in the study (with only behavioral
data) were both 9 years old.

This study did not involve wild animals.
This study did not involve samples collected from the field.

All experiments were conducted in accordance with the guidelines set forth by the US National Institutes of Health, as reviewed
and approved by the Yale University Institutional Animal Care and Use Committee, and by the Wake Forest University
Institutional Animal Care and Use Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

We studied healthy controls. The study does not address any specific covariate of interest across individuals, but within-subject
comparisons between trial types.

Participants were recruited from a volunteer database, mostly including people associated with the research institute and
hospital, in all cases naive to this study.

Research Ethics Committee of Hospital Clinic (Barcelona)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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