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There are inherent trade-offs between the flexibility and the capacity of working memory, or the ability to
temporarily hold information ‘‘in mind.’’ In a recent issue of Neuron, Bouchacourt and Buschman (2019) pre-
sent a new model of working memory that demonstrates how coordinated activity between specialized sen-
sory networks and flexible higher-order networks may support these competing constraints.
Working memory refers to our ability to

temporarily hold relevant information ‘‘in

mind.’’ Two key features of working mem-

ory are its flexibility and its starkly limited

capacity. Working memory is flexible

enough to represent novel combinations

of visual features but limited to represent-

ing only a few chunks of information at

once. For example, if you see an unfamil-

iar flower on a hike, you can hold a precise

image of its color and petal shape in work-

ing memory while you search for a match

in your wildflower guide. But, if you come

across a dozen unique flowers and want

to ID them all, you cannot simultaneously

hold them all in mind. Your memory for

the distinct features of each flower will

become less precise, and many flowers

will be forgotten altogether. Thus, you

might strategically and flexibly encode

only a subset of the available information

(e.g., just the colors or shapes of three

flowers) each time you check your guide.

For decades, there has been great in-

terest in modeling the neural codes that

support working memory, particularly

because working memory is disrupted in

many clinical disorders (e.g., Schizo-

phrenia, Parkinson’s, depression). How-

ever, flexibility and capacity have rarely

been modeled together. In a recent issue

of Neuron, Bouchacourt and Buschman

(2019) present a new model that captures

both core aspects of working memory.

This model, which we’ll refer to as the

‘‘coordinated network model,’’ shows

how structured sensory networks and a

flexible, higher-order network can work

together to support and constrain working

memory.

Studies of working memory’s capacity

often take working memory’s flexibility
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for granted. For simplicity’s sake, a com-

mon strategy is tomeasure workingmem-

ory capacity using simple, controlled

stimuli from a single feature space (e.g.,

colored squares). Because of this, many

models have considered how competitive

interactions in networks tuned for a

particular feature space, such as color,

will lead to behavioral capacity limits

(e.g., Compte et al., 2000). Although

such models can explain behavioral ca-

pacity limits when remembering stimuli

in a common feature space, they have a

more difficult time explaining how limits

would arise when flexibly remembering

items that are novel or from multiple

feature spaces. The key insight raised by

Bouchacourt and Buschman (2019) is

that competitive interactions that lead to

capacity limits may actually arise via less

specialized, higher-order processing

layers rather than via direct competition

within sensory networks. Of course, these

possibilities are not mutually exclusive,

and competition occurs at multiple levels

of processing. But, an important test

is whether interference in a flexible,

domain-general processing layer is suffi-

cient to generate capacity limits.

To create a model that is both flexible

and can account for the capacity limits

observed in behavior, Bouchacourt and

Buschman (2019) combined a structured,

sensory-specific network (sensory layer)

with a flexible, random network (random

layer) in a two-layer networkmodel. These

two layers roughly map onto key charac-

teristics of different areas of the brain.

Early visual areas (e.g., V1–V4) are rela-

tively specialized, with small receptive

fields and neurons that are selective for

a particular feature. By contrast, higher-
er Inc.
order control regions like pre-frontal cor-

tex are thought to flexibly represent arbi-

trary stimulus combinations, rules, and

abstract ideas. In their model, the investi-

gators implement these characteristics

by linking highly structured sensory net-

works with higher-order networks via

random connections. Each sensory net-

work (one per encoded memory item) is

structured in that an input of one color

(e.g., red) leads to systematic excitation

and inhibition as a function of color simi-

larity; neurons tuned to similar colors are

partially excited and those tuned to dis-

similar colors are inhibited. Importantly,

there is no direct competition between

the sensory populations that encode

each remembered item; instead, compe-

tition occurs in the random network.

Because of this independence, the coor-

dinated network model yields the predic-

tion that competition will occur even

when items are drawn from different

feature spaces such as color and orienta-

tion (e.g., Fougnie et al., 2010). In contrast

to connections within the sensory net-

work, connections between the random

network and the sensory networks are un-

structured with respect to color. Mem-

ories are maintained by bidirectional,

reciprocal connections between the

random and sensory layers.

The storage of memories via random

connections between structured sensory

networks and higher-order networks pro-

vides a flexible mechanism for represent-

ing information of any type. However, it

comes at a cost. For example, if we hold

the colors of two flowers in mind rather

than one, our memory for each color will

be less precise. This cost can be pre-

dicted by the coordinated network model.
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Figure 1. Holding Precise Memories in Mind
(A) Working memory is howwe temporarily hold information in mind. For example, while hiking, wemay spot a flower that we want to identify. When we look away
from the desert scene to our flower guide, we can hold a precise representation of the flower’s color in mind.
(B and C) In the coordinated network model, each item is input to a separate ‘‘sensory network.’’ When holding just one item in mind (B), we can remember it
precisely, with few errors. When storing multiple items (C), representations begin to interfere in the random network. Thick gray lines represent excitatory
connections; thin gray lines represent inhibitory. Note: this figure is illustrative and does not reproduce exact model parameters.
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When asked to remember one item, the

modeled ‘‘neurons’’ selective to the color

of the item in one sensory network are

partially excited; these neurons in turn

excite a random subset of neurons in the

random network (Figure 1). A second

remembered item will excite a different,

but potentially overlapping, subset of

neurons in the random network. Thus,

on average, neurons in the random

network have a greater sustained firing

rate when more items are remembered,

as observed in prefrontal cortex (Fuster,

1973). But, the excitation from a given

neuron in the sensory network to the

random network is balanced by weak

inhibitory connections to all other neurons

in the random network. This balanced in-

hibition means that the second item is

also more likely to inhibit the neurons in

the random network that are excited by

the first item, thus weakening the recur-

rent feedback to the first item’s sensory

network. This has two key consequences.

First, it results in divisive-normalization-

like attenuation of tuning selectivity in

the random and sensory networks.

Consistent with empirical work, the coor-

dinated network model predicts that the

neural response to two items remem-

bered together is a sublinear combination

of the response to each item remembered

on its own (Heeger, 1992). Second, this

weakened recurrent feedback can lead

to drift in the neural representation away

from the true presented color, reducing

behavioral precision.

A key ongoing debate is whether we

actively maintain only a subset of items

from large arrays and forget the rest
(e.g., store 3 of 8 items) or if we instead

maintain very imprecise representations

of all items (e.g., van den Berg et al.,

2014). The coordinated network model

implements a ‘‘some-or-none’’ storage

mechanism; if there is sufficient mem-

ory-related activity beyond a certain

threshold, representation of the memory

is sustained throughout the delay (though

it may drift and become less precise). If

activity is insufficient, the memory col-

lapses to a null attractor state and is

lost. This model prediction is consistent

with recent behavioral work finding uni-

formly distributed guess responses for a

subset of items from large arrays (Adam

et al., 2017). The coordinated network

model’s some-or-none implementation

of storage highlights one way that graded

neural codes could yield the complete

loss of items when working memory

is taxed.

Prior work has shown that widely

distributed brain regions participate in

working memory (for review, Christophel

et al., 2017), but there has been substan-

tial debate about which of these codes is

most necessary or even solely necessary

for supporting working memory. Some

work has emphasized that sensory areas

are well suited to maintaining extremely

precise representations, whereas other

work has argued that sensory codes

may not be useful when interrupted by

new visual inputs (Bettencourt and Xu,

2016; but see Rademaker et al., 2019).

Bouchacourt and Buschman’s coordi-

nated network model highlights that the

interaction between multiple regions,

rather than a single region or representa-
tion, may be key to understanding how

different areas jointly contribute to sup-

porting working memory.
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