CellPress

Working Memory: Flexible but Finite
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There are inherent trade-offs between the flexibility and the capacity of working memory, or the ability to
temporarily hold information “in mind.” In a recent issue of Neuron, Bouchacourt and Buschman (2019) pre-
sent a new model of working memory that demonstrates how coordinated activity between specialized sen-
sory networks and flexible higher-order networks may support these competing constraints.

Working memory refers to our ability to
temporarily hold relevant information “in
mind.” Two key features of working mem-
ory are its flexibility and its starkly limited
capacity. Working memory is flexible
enough to represent novel combinations
of visual features but limited to represent-
ing only a few chunks of information at
once. For example, if you see an unfamil-
iar flower on a hike, you can hold a precise
image of its color and petal shape in work-
ing memory while you search for a match
in your wildflower guide. But, if you come
across a dozen unique flowers and want
to ID them all, you cannot simultaneously
hold them all in mind. Your memory for
the distinct features of each flower will
become less precise, and many flowers
will be forgotten altogether. Thus, you
might strategically and flexibly encode
only a subset of the available information
(e.g., just the colors or shapes of three
flowers) each time you check your guide.

For decades, there has been great in-
terest in modeling the neural codes that
support working memory, particularly
because working memory is disrupted in
many clinical disorders (e.g., Schizo-
phrenia, Parkinson’s, depression). How-
ever, flexibility and capacity have rarely
been modeled together. In a recent issue
of Neuron, Bouchacourt and Buschman
(2019) present a new model that captures
both core aspects of working memory.
This model, which we’ll refer to as the
“coordinated network model,” shows
how structured sensory networks and a
flexible, higher-order network can work
together to support and constrain working
memory.

Studies of working memory’s capacity
often take working memory’s flexibility

for granted. For simplicity’s sake, a com-
mon strategy is to measure working mem-
ory capacity using simple, controlled
stimuli from a single feature space (e.g.,
colored squares). Because of this, many
models have considered how competitive
interactions in networks tuned for a
particular feature space, such as color,
will lead to behavioral capacity limits
(e.g., Compte et al., 2000). Although
such models can explain behavioral ca-
pacity limits when remembering stimuli
in a common feature space, they have a
more difficult time explaining how limits
would arise when flexibly remembering
items that are novel or from multiple
feature spaces. The key insight raised by
Bouchacourt and Buschman (2019) is
that competitive interactions that lead to
capacity limits may actually arise via less
specialized, higher-order processing
layers rather than via direct competition
within sensory networks. Of course, these
possibilities are not mutually exclusive,
and competition occurs at multiple levels
of processing. But, an important test
is whether interference in a flexible,
domain-general processing layer is suffi-
cient to generate capacity limits.

To create a model that is both flexible
and can account for the capacity limits
observed in behavior, Bouchacourt and
Buschman (2019) combined a structured,
sensory-specific network (sensory layer)
with a flexible, random network (random
layer) in a two-layer network model. These
two layers roughly map onto key charac-
teristics of different areas of the brain.
Early visual areas (e.g., V1-V4) are rela-
tively specialized, with small receptive
fields and neurons that are selective for
a particular feature. By contrast, higher-
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order control regions like pre-frontal cor-
tex are thought to flexibly represent arbi-
trary stimulus combinations, rules, and
abstract ideas. In their model, the investi-
gators implement these characteristics
by linking highly structured sensory net-
works with higher-order networks via
random connections. Each sensory net-
work (one per encoded memory item) is
structured in that an input of one color
(e.g., red) leads to systematic excitation
and inhibition as a function of color simi-
larity; neurons tuned to similar colors are
partially excited and those tuned to dis-
similar colors are inhibited. Importantly,
there is no direct competition between
the sensory populations that encode
each remembered item; instead, compe-
tition occurs in the random network.
Because of this independence, the coor-
dinated network model yields the predic-
tion that competition will occur even
when items are drawn from different
feature spaces such as color and orienta-
tion (e.g., Fougnie et al., 2010). In contrast
to connections within the sensory net-
work, connections between the random
network and the sensory networks are un-
structured with respect to color. Mem-
ories are maintained by bidirectional,
reciprocal connections between the
random and sensory layers.

The storage of memories via random
connections between structured sensory
networks and higher-order networks pro-
vides a flexible mechanism for represent-
ing information of any type. However, it
comes at a cost. For example, if we hold
the colors of two flowers in mind rather
than one, our memory for each color will
be less precise. This cost can be pre-
dicted by the coordinated network model.
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Figure 1. Holding Precise Memories in Mind

(A) Working memory is how we temporarily hold information in mind. For example, while hiking, we may spot a flower that we want to identify. When we look away
from the desert scene to our flower guide, we can hold a precise representation of the flower’s color in mind.

(B and C) In the coordinated network model, each item is input to a separate “sensory network.” When holding just one item in mind (B), we can remember it
precisely, with few errors. When storing multiple items (C), representations begin to interfere in the random network. Thick gray lines represent excitatory
connections; thin gray lines represent inhibitory. Note: this figure is illustrative and does not reproduce exact model parameters.

When asked to remember one item, the
modeled “neurons” selective to the color
of the item in one sensory network are
partially excited; these neurons in turn
excite a random subset of neurons in the
random network (Figure 1). A second
remembered item will excite a different,
but potentially overlapping, subset of
neurons in the random network. Thus,
on average, neurons in the random
network have a greater sustained firing
rate when more items are remembered,
as observed in prefrontal cortex (Fuster,
1973). But, the excitation from a given
neuron in the sensory network to the
random network is balanced by weak
inhibitory connections to all other neurons
in the random network. This balanced in-
hibition means that the second item is
also more likely to inhibit the neurons in
the random network that are excited by
the first item, thus weakening the recur-
rent feedback to the first item’s sensory
network. This has two key consequences.
First, it results in divisive-normalization-
like attenuation of tuning selectivity in
the random and sensory networks.
Consistent with empirical work, the coor-
dinated network model predicts that the
neural response to two items remem-
bered together is a sublinear combination
of the response to each item remembered
on its own (Heeger, 1992). Second, this
weakened recurrent feedback can lead
to drift in the neural representation away
from the true presented color, reducing
behavioral precision.

A key ongoing debate is whether we
actively maintain only a subset of items
from large arrays and forget the rest

(e.g., store 3 of 8 items) or if we instead
maintain very imprecise representations
of all items (e.g., van den Berg et al,
2014). The coordinated network model
implements a “some-or-none” storage
mechanism; if there is sufficient mem-
ory-related activity beyond a certain
threshold, representation of the memory
is sustained throughout the delay (though
it may drift and become less precise). If
activity is insufficient, the memory col-
lapses to a null attractor state and is
lost. This model prediction is consistent
with recent behavioral work finding uni-
formly distributed guess responses for a
subset of items from large arrays (Adam
et al.,, 2017). The coordinated network
model’s some-or-none implementation
of storage highlights one way that graded
neural codes could yield the complete
loss of items when working memory
is taxed.

Prior work has shown that widely
distributed brain regions participate in
working memory (for review, Christophel
et al., 2017), but there has been substan-
tial debate about which of these codes is
most necessary or even solely necessary
for supporting working memory. Some
work has emphasized that sensory areas
are well suited to maintaining extremely
precise representations, whereas other
work has argued that sensory codes
may not be useful when interrupted by
new visual inputs (Bettencourt and Xu,
2016; but see Rademaker et al., 2019).
Bouchacourt and Buschman’s coordi-
nated network model highlights that the
interaction between multiple regions,
rather than a single region or representa-

tion, may be key to understanding how
different areas jointly contribute to sup-
porting working memory.
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