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Abstract

B Attentional control and working memory capacity are impor-
tant cognitive abilities that substantially vary between individ-
uals. Although much is known about how attentional control
and working memory capacity relate to each other and to
constructs like fluid intelligence, little is known about how trial-
by-trial fluctuations in attentional engagement impact trial-by-
trial working memory performance. Here, we employ a novel
whole-report memory task that allowed us to distinguish between
varying levels of attentional engagement in humans perform-
ing a working memory task. By characterizing low-performance
trials, we can distinguish between models in which work-
ing memory performance failures are caused by either (1) com-
plete lapses of attention or (2) variations in attentional control.
We found that performance failures increase with set-size
and strongly predict working memory capacity. Performance

INTRODUCTION

Individuals with low working memory capacity perform
poorly on measures of aptitude such as fluid intelligence
and academic achievement (Unsworth, Fukuda, Awh, &
Vogel, 2014; Fukuda, Vogel, Mayr, & Awh, 2010; Engle,
Tuholski, Laughlin, & Conway, 1999; Turner & Engle,
1989; Daneman & Green, 1986; Daneman & Carpenter,
1980), and extensive work has suggested that individual
differences in capacity stem in part from variability in
deploying attention (Fukuda & Vogel, 2009, 2011). Low-
capacity individuals have specific difficulties in tasks that
require attentional control, suggesting that variability
in effectively exerting these control mechanisms deter-
mines apparent capacity differences. However, because
capacity measures are calculated from average perfor-
mance across an entire session, a common alternative
hypothesis remains: Individual differences in capacity are
the result of a mixture of “complete attention trials,” in
which participants maximally allocate their available
memory resources, and “lapse trials,” in which partici-
pants fail to allocate any available memory resources be-
cause of complete disengagement from the task. Thus,
low-capacity individuals may simply have more lapse trials
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variability was best modeled by an attentional control model
of attention, not a lapse model. We examined neural signa-
tures of performance failures by measuring EEG activity while
participants performed the whole-report task. The number of
items correctly recalled in the memory task was predicted by
frontal theta power, with decreased frontal theta power asso-
ciated with poor performance on the task. In addition, we
found that poor performance was not explained by failures
of sensory encoding; the P1/N1 response and ocular artifact
rates were equivalent for high- and low-performance trials. In
all, we propose that attentional lapses alone cannot explain
individual differences in working memory performance.
Instead, we find that graded fluctuations in attentional control
better explain the trial-by-trial differences in working memory
that we observe. I}

than high-capacity individuals and consequently show
reduced average performance.

A lapse account of working memory performance is
consistent with evidence suggesting that task engage-
ment is associated with differences in working memory
ability. First, low-capacity individuals engage in mind-
wandering more frequently than high-capacity individ-
uals, particularly during cognitively challenging tasks
(Mrazek et al., 2012; McVay & Kane, 2010; Smallwood
& Schooler, 2006). Second, the slowest RT trials in choice
RT tasks are the most predictive of intelligence scores
(i.e., the worst performance rule), suggesting that atten-
tional lapses contribute to estimates of individual apti-
tude (Coyle, 2003). Finally, low-capacity individuals
exhibit periods of goal neglect, a performance failure in
which task rules are explicitly understood, but are never-
theless not behaviorally executed (Duncan, Schramm,
Thompson, & Dumontheil, 2012; Duncan, Emslie, Williams,
Johnson, & Freer, 1996). Thus, low-capacity participants
may experience an increased number of failures for a vari-
ety of reasons, from being captured by distracting internal
thoughts to simply giving up on a difficult task.

We have described a lapse model of inattention, in
which inattention leads to complete disengagement from
the task. However, inattention could also manifest as de-
graded attentional control rather than as a complete
lapse. Under an attentional control model of inattention,
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impaired attention would lead to reduced performance,
though not necessarily to total neglect of the task if the
inattention is incomplete. From this view, the efficiency
of attentional control may vary over the session in a
graded fashion; differences between participants could
be viewed as a shift in the distribution of effective atten-
tional engagement. Low-capacity individuals would have a
downward shift in this distribution, leading to more fre-
quent periods of partial disengagement than high-capacity
participants. Indeed, the evidence reviewed above from
mind-wandering frequency and RT variability would be con-
sistent with either complete or graded failures of attention.
However, these two models have not been evaluated di-
rectly against one another. Critically, most attention and
working memory tasks rely on one of two metrics: accuracy
and RTs. Accuracy measures are binary (correct or incorrect),
making it difficult to test for a graded attentional model.
Conversely, RT measures are continuous, making it difficult
to test for a complete lapse model. Thus, it is not surprising
that the attention literature (predominately RT measures)
has strongly assumed a graded model of attention, whereas
the working memory capacity literature (predominately sig-
nal detection measures) has tested only coarse lapse
parameters.

For example, in the change detection paradigm, a
randomly chosen item from each memory array is
probed, and the participant must indicate whether it is
the same as the originally presented item. Here, an indi-
vidual’s capacity is estimated across a series of trials by
determining the probability of having stored the probed
item on a given trial. Consequently, performance on an
individual trial is not informative on its own because an
error could be the result of either a complete memory
failure (0 items stored) or a successful memory (4 items
stored) that was unlucky because the probed item did
not happen to be stored. At present, only the complete
lapse model has been directly tested in the working
memory literature (Van den Berg, Awh, & Ma, 2014;
Sims, Jacobs, & Knill, 2012; Morey, 2011; Rouder, Morey,
Morey, & Cowan, 2011; Rouder et al., 2008). For exam-
ple, Rouder et al. (2008, 2011) found that adding a lapse
parameter substantially improved model estimates of
working memory capacity in a change detection task,
particularly by accounting for why errors occur on sub-
capacity memory arrays. This work demonstrates that
an “all or nothing” lapse account could plausibly explain
individual differences in capacity. However, because of
the aggregate nature of the data, a graded attentional
control account could not be evaluated.

Here, we measure how working memory performance
fluctuates within a session to determine whether perfor-
mance failures are better explained by a lapse model
(coarse failures) or by an attentional control model (graded
failures). To do so, we employ a novel whole-report task
that provides a trial-by-trial measurement of the total
number of correctly reported items from each array,
allowing us to examine the distribution of levels of suc-
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cess on each trial. Our novel whole-report measure is
both discrete (each item is correct or incorrect) and con-
tinuous (the number of objects correct can fluctuate),
allowing us to uniquely distinguish between these two
hypothetical models.

Measuring performance fluctuations with continuous
whole-report allows us to test distinct predictions made
by the competing attentional control and lapse accounts
of underperformance. First, although a lapse model pre-
dicts that lower-capacity individuals would show higher
lapse rates than high-capacity individuals regardless of
task load, an attentional control model predicts that sub-
stantial performance failures related to individual capacity
would only be observed under task loads that necessitate
attentional control, such as for supracapacity displays.
Second, although a lapse model predicts a bimodal dis-
tribution of performance (i.e., lapse vs. full attention),
an attentional control model predicts a graded downward
shift in performance distributions for low-capacity indi-
viduals. After distinguishing between lapse and atten-
tional control models of performance fluctuations, we
test several hypotheses about the mechanisms of perfor-
mance fluctuations. These mechanisms include changes
in task engagement over time, task noncompliance, sen-
sory encoding, and attentional control.

In three experiments, we establish the validity of a
novel working memory measure and then test hypothe-
ses that differentiate a lapse model and an attentional
control model of individual differences in working mem-
ory capacity. In a discrete whole-report measure of work-
ing memory, participants view a display of brightly
colored items, remember the display, and then are asked
to identify the color of each item from a fixed set of color
choices. Task accuracy is determined by counting the
number of correctly identified items. Thus, a participant’s
level of performance can be calculated for every trial in
the experiment. This trial-by-trial measurement of per-
formance is critical for investigating novel hypotheses
about the nature of trial-by-trial task engagement.

In Experiment la, we tested whether set-size affects
the number of performance failures. A coarse lapse model
would predict that the amount of time spent disengaged
from the task does not vary across set-sizes (Rouder
et al., 2008, 2011). Alternatively, an attentional control
model would predict an increased rate of performance
failures (few items correct) when the set-size exceeds
capacity. We had participants complete a change detection
memory task and a whole-report memory task for multiple
set-sizes (two to six items). We include a change detection
measure for two reasons: (1) to initially validate our novel
whole-report measure of working memory and (2) as
an independent measure that allows us to more closely
examine the contributions of within- and between-
participant variability in working memory performance
while minimizing issues of circularity.

In Experiment 1b, we collected a large number of supra-
capacity trials to test lapse and attentional control models
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and to examine the consistency of performance failures
over time. Participants completed a large number of exclu-
sively set-size 6 trials (along with a standard change detec-
tion measure). By continuously repeating the same
challenging set-size, we could look for fluctuations in
engagement over time without confounding carryover
effects from conditions with different levels of difficulty.

Finally, we tested whether neural measures of sensory
encoding and attentional control predict trial-by-trial
working memory performance. In Experiment 2, a new
set of participants performed the same tasks as in Exper-
iment 1b while EEG and EOG activity was recorded.
Using only the set-size 6 condition was also ideal for
EEG analyses, as we could examine fluctuations in neural
signals while holding physical stimulation constant. To
examine markers of low-performance trials, we analyzed
the P1/N1 visual-evoked response and behavioral accu-
racy for artifact-rejected trials. To examine the potential
contribution of attentional control, we measure frontal
theta power and posterior alpha power across all time
points in the trial.

METHODS
Participants

All participants gave written informed consent according
to procedures approved by the University of Oregon
institutional review board. Participants were compen-
sated for participation with course credit or monetary
payment ($8/hr for behavior, $10/hr for EEG). A unique
set of individuals participated in each experiment, with
40 in Experiment la, 45 in Experiment 1b, and 26 in
Experiment 2. One participant from Experiment 1b was ex-
cluded from analyses for failure to comply with task instruc-
tions. After artifact rejection, three participants were
excluded from Experiment 2 analyses for artifact rates in ex-
cess of 25% or fewer than 300 remaining trials, and one par-
ticipant did not complete the change detection measure, so
they were excluded from between-participant analyses
using change detection but included in within-participant
analyses.

Stimuli

Stimuli were generated in MATLAB (The MathWorks,
Natick, MA) using the Psychophysics toolbox (Brainard,
1997; Pelli, 1997) and presented on 21-in. CRT monitors.
Participants were seated approximated 60 cm from the
monitor. In Experiment 1a, stimuli (2.50° visual angle) for
both whole-report and change detection tasks consisted of
eight colors (RGB values: Red = 255 0 0; Green = 0 255 0;
Blue = 00 255; Magenta = 255 0 255; Yellow = 255 255 0
Cyan = 0 255 255; White = 255 255 255; Black = 0 0 0),
presented on a gray background (RGB = 128 128 128). In
Experiment 1b and Experiment 2, one additional color

(RGB: Orange = 255 128 0) was added to the potential
memory set colors.

Tasks
Change Detection Task

The change detection task used in all experiments follow-
ed standard procedures (Luck & Vogel, 1997). In Exper-
iment la, participants were presented with arrays of two
to six colored squares for 150 msec (memory array),
which disappeared for 900 msec (retention period),
followed by the presentation of one colored square (test
probe) at the location previously occupied by an item in
the memorandum. In Experiment 1b and Experiment 2,
participants were presented with arrays of four, six, or
eight items, and trials used a 250-msec stimulus array
and 1000-msec retention period. On 50% of trials, the
test item was the same as the item presented in the
memory array, and in the remaining 50% of trials, the test
item was different. Participants were instructed to make
an unspeeded button press to indicate whether the color
of the probe had changed. The next trial began after an
intertrial interval of either 900 msec (Experiment 1a) or
1000 msec (Experiment 1b and Experiment 2).

Whole-report Task

The whole-report procedure was similar to the change
detection task with the exception that individuals re-
called each item shown in the memory array. At re-
sponse, individuals were shown a three by three matrix
of colors over each location of memory array items; they
were instructed to use a mouse to click on the color
square corresponding to the memory array item at each
location. In Experiment 1a, individuals were encouraged
to respond to as many items as they could remember and
advanced to the next trial by pressing the spacebar. In
Experiments 1b and 2, individuals were required to re-
spond to all items in the memory array. The next trial
began when all responses were made (Experiment 1b)
or after the participant clicked to indicate they were
ready for the next trial (Experiment 2). Stimulus timing
parameters were the same as for the respective change
detection task, except for Experiment 2. In Experiment 2,
the retention interval and intertrial interval periods were
increased to 1300 msec to provide a larger time window
for oscillatory analyses.

Procedures
Experiment 1a

Participants completed two blocks of 150 trials of the
change detection task and the whole-report task across
several set-sizes (two to six items). Set-sizes were inter-
mixed within blocks for all experiments. For each of
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the two tasks, participants completed 150 trials, for a total
of 30 trials per set-size.

Experiment 1b

Participants performed five blocks of 36 trials of the
change detection task, for a total of 60 trials per set-size.
For the whole-report task, participants completed 10
blocks of 30 trials (300 trials total), and all arrays were
set-size 6.

Experiment 2

Participants performed the same tasks as in Experiment 1b,
while we recorded EEG activity. Participants performed
five blocks of 36 trials of the change detection task, for
a total of 60 trials per set-size. For the whole-report task,
participants completed 15-18 blocks of 30 trials (450-
540 trials total), and all arrays were set-size 6.

EEG Data Collection

EEG activity was recorded at 20 electrodes mounted
in an elastic cap (ElectroCap International, Eaton, OH)
using our standard recording and analysis procedures
(McCollough, Machizawa, & Vogel, 2007). The Inter-
national 10/20 sites F3, FZ, F4, T3, C3, CZ, C4, T4, P3,
PZ P4, T5, T6, O1, and O2 were used along with five
nonstandard sites: OL midway between TS and O1, OR
midway between T6 and O2, PO3 midway between P3
and OL, PO4 midway between P4 and OR, and POz mid-
way between PO3 and PO4. All sites were recoded with a
left-mastoid reference, and the data were re-referenced
offline to the algebraic average of the left and right mas-
toids. Horizontal EOG was recorded from electrodes
placed ~1 cm to the left and right of the external canthi
of each eye to measure horizontal eye movements. To
detect blinks, vertical EOG was recorded from an elec-
trode mounted beneath the left eye and referenced to
the left mastoid. The EEG and EOG signals were ampli-
fied with an SA Instrumentation amplifier (Fife, Scotland)
with a bandpass of 0.01-80 Hz and were digitized at
250 Hz in Labview 6.1 running on a PC.

Trials including blocking, blinks, or large (>1°) ocular
movements were rejected and excluded from further
analysis. For ERP analyses, we baselined the signal over
the 200 msec prior to the timelocking event (onset of
the memory array); trials were filtered with a low-pass
finite impulse response filter with a cutoff of 40 Hz. For
oscillatory analyses, we bandpass-filtered the raw EEG
using a two-way, least-squares finite impulse response
filter using the eegfilt.m filter function from the EEGLAB
Toolbox (Delorme & Makeig, 2004; Brainard, 1997). We
applied the MATLAB Hilbert transform (hilbert.m) to
extract the instantaneous power values. For spectrograms,
power data were calculated separately for each 1 Hz band.
For band-specific analyses, power data were calculated
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for typically defined frequency bands (theta: 4-7 Hz; alpha:
8-12 Hz; beta: 13-22 Hz).

Statistical Analyses
Change Detection Capacity

Each participant’s change detection accuracy was trans-
formed into a K estimate using Cowan’s formula K =
N X (H — FA), where N represents the set-size, H is the
hit rate, and FA is the false alarm rate (Cowan, 2001).
In Experiment 1a, the average of set-sizes 4, 5, and 6 arrays
were used to estimate each participant’s change detection
capacity. In Experiment 1b and Experiment 2, all set-sizes
4, 6, and 8 were used to estimate capacity.

Whole-report Accuracy

For the whole-report procedure, we estimated accuracy
in two ways. First, we calculated the average number of
correctly reported items per set-size. Second, we split
performance into the proportion of trials in which partic-
ipants correctly reported zero, one, two, and so forth, for
each set-size. This method allowed us to measure the
proportion of trials during which participants exhibited
impaired working memory performance and how failures
varied as a factor of set-size and working memory capac-
ity. By examining trial-by-trial accuracy, we can observe
the impact of performance fluctuations on overall work-
ing memory ability.

Simulation Analyses

The greater number of trials in Experiment 1b allowed us
to perform a finer analysis of trial-by-trial performance.
First, we characterized the expected performance out-
come if participants had a complete attentional lapse.
We ran 30 iterations of a simulation where the computer
guessed colors (without replacement) for the six items in
the display across 300 trials. We also wanted to character-
ize the effect of guessing inflation on performance, espe-
cially for high-performance trials. To do so, we assigned
three correct objects to each trial in the simulation and
examined the effect of guessing colors without replace-
ment for the remaining three items. Finally, we ran sim-
ulations to test whether a complete lapse model or a
graded attentional control model could explain trial-by-
trial fluctuations in working memory performance. The
two hypothetical models both predict that trial-by-trial
performance in the whole-report task can be modeled
by (1) an upper limit on total available working memory
resources and (2) a probability of allocating the available
working memory resources. The lapse and attentional
control models differ only in the higher-order distribu-
tion used to predict the probability of allocating working
memory resources on a trial-by-trial basis. Importantly,
the parameter values for the models were chosen only
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with respect to mean performance; the model-fitting
procedure was blind to the underlying distribution of
trials. After the model that best fit the mean was chosen
(minimum difference between true and simulated
mean), we used the residuals of the model fits (root
mean square error [RMSE]) to test the fit of each lapse
model across participants.

Lapse Model

The lapse model was based on the assumption that indi-
viduals are either fully on task or completely disengaged
from the task (Van den Berg et al., 2014; Morey, 2011,
Rouder et al., 2008, 2011). This model predicts that dur-
ing full engagement trials, participants will be able to
maximally allocate working memory resources (maxi-
mum capacity), with guessing inflation accounting for
the trials in which the number of items correct exceeds
this capacity. For fully disengaged trials, the model pre-
dicts that responses will only be based on guessing.
The higher-order distribution of the complete lapse model
is Bernoulli-distributed, a distribution with only two
values, zero and one. The proportion of zeroes in the dis-
tribution represents disengaged trials, and the propor-
tion of ones represents fully engaged trials. On each
simulated trial, one value is pulled from the higher-order
distribution and multiplied by the maximum capacity
parameter to yield the performance outcome. For exam-
ple, if maximum capacity parameter is three items, then
on a trial where a “1” is pulled, the participant achieves
1 X 3, or three items. Guessing is accounted for the
remaining items in the set-size (in this case, three guesses).
For each participant and parameter level, we simulated
300 trials for each participant. During each run of the
simulation, maximum capacity was initially held constant
at three items, whereas the proportion of lapses (zeroes)
in the higher-order distribution was parametrically in-
creased from 0% to 100% in steps of 1%. We allowed for
guessing by randomly drawing without replacement from
the nine possible colors. For example, for a lapse param-
eter of 20%, we sampled only from the random guessing
distribution for 20% of the trials, whereas for the remaining
80% of trials, capacity was set to three items plus three
guesses. The simulated mean number correct for each
run was compared to each individual’s empirical mean
number correct to determine the best-fit lapse parameter.
This was repeated for each participant in the data set. The
lapse parameter that best fit the mean experimental perfor-
mance for each participant was used to generate the under-
lying response distributions for the model. The aggregate
of the generated response distributions were then used to
test the fit of the complete lapse model.

Attentional Control Model

The attentional control model was similar to the complete
lapse procedure with the exception that the higher-order

distribution was beta-distributed. Like a Bernoulli dis-
tribution, a beta distribution has values bound between
zero and one. However, the beta distribution contains
many graded outcomes between zero and one. In the
attentional control model, one represents maximal atten-
tional engagement and zero represents minimal atten-
tional disengagement. We used a beta distribution
because we could model the graded probability of maxi-
mally allocating working memory resources on each trial.
The o parameter of the beta distribution was param-
etrically varied from zero to six in steps of .01, whereas
the p parameter was constrained to one. Thus, only a
single parameter was varied to shift the relative propor-
tion of more engaged and less engaged trials. For each
cycle of a values, we randomly generated a value from a
beta distribution of [e,1] for each trial. On each trial of
the simulation, one value was pulled from the beta dis-
tribution (e.g., 0.5), multiplied by the maximum capacity
parameter (e.g., 0.5 X 3 = 1.5), and rounded to the near-
est discrete outcome (e.g., 2). As in the complete lapse
model, for each participant in the data set, the a value
that best-fit the participant’s observed data was selected.
These best-fit a values were then used to generate a dis-
tribution of responses predicted by the model, which
were then used to test the fit of the model by calculating
the RMSE.

RESULTS

Mean Whole-report Performance Corresponds with
Change Detection Capacity

The task and results from Experiment 1a are shown in
Figure 1. For both tasks, working memory performance
increases with set-size, reaching a stable plateau around
three to four items. Averaged across set-sizes, the mean
change detection capacity estimate (Cowan’s K) was 2.62
(SD = 0.72), and the mean number of items correct on
the whole-report task was 2.91 (SD = 0.51). We ran sep-
arate repeated-measures ANOVAs to verify the change
in performance across set-sizes for change detection
and for whole-report performance. Change detection
performance was significantly different across set-sizes,
F(2.48, 96.68) = 18.13, p < .01. Here and for other cases
in which Mauchly’s test indicated a violation of the
assumption of sphericity, we report Greenhouse-Geisser
corrected F statistics and p values. We also ran planned
simple contrasts (comparing all smaller set-sizes to the
largest set-size) to check for a plateau in performance;
we found that the only significant contrast was between
set-size 2 and set-size 6, F(1, 39) = 18.13, p < .01. The
comparisons between set-size 6 and the other set-sizes
(3, 4, and 5) were not significant, all comparisons p >
.20, suggesting that performance reached a plateau at
set-size 3. Whole-report performance was also significant
across different set-sizes, F(1, 39) = 89.54, p < .01. We
again ran planned simple contrasts comparing all lower
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Figure 1. Results from Experiment 1a. (A) Illustration of the task design and stimuli in Experiment 1a. (B) Overall performance changes in a
similar manner for change detection (blue) and whole report (red) across set-sizes. (C) The correlation between mean whole-report performance
and change detection capacity at each set-size. The proportion of performance failures in whole-report (0 or 1 correct) increases across set-size

(D) and explains more variance in capacity across set-size (E).

set-sizes to set-size 6. We found that set-size 6 perfor-
mance was significantly higher than set-size 2, F(1, 39) =
119.49, p < .01, and set-size 3, F(1, 39) = 9.34, p < .01,
but not for other set-sizes (p > .30), suggesting that per-
formance reached a plateau around set-size 4.

In addition to examining how within-task performance
changes with load, we can also examine if the relation-
ship between whole-report performance and change
detection K is consistent across loads. For each whole-
report set-size, we calculated the correlation with a typi-
cal measure of change detection capacity (set-sizes 4, 5,
and 6) and the mean number of items correctly reported
for each set-size. The relationship between change detec-
tion K and whole-report performance across set-sizes is
shown in Figure 1B. At the lowest set-size (2 items) the
relationship between the two measures was nonsignifi-
cant; the relationship becomes significant at set-size 3
and increases in strength as participants become more
overloaded with items (Figure 1C). However, the lack
of correlation between change detection capacity and
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whole-report performance at set-size 2 could be due to
ceiling effects; most participants were nearly perfect at
responding to the set-size 2 trials. In summary, whole-
report and change detection estimates of average work-
ing memory performance are strongly related to each
other. Next, we can investigate whether specific perfor-
mance outcomes (e.g., 0 items correct) change across
working memory loads and whether performance out-
comes also predict individual differences in working
memory capacity.

The Relationship between Performance Failures
and K Is Set-size Dependent

To assess performance failures, we measured the propor-
tions of trials in which a given number of items were
correctly identified on each trial. We defined perfor-
mance failures as trials in which participants scored 0
or 1 items correct out of 6 possible items, because a sim-
ulation of guessing yielded 0 or 1 correct on 85% of trials
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(see simulation results; Figure 3A). In particular, we were
interested in quantifying whether the proportion of
extreme performance failures was constant or variable
across set-sizes. As illustrated in Figure 1C, we found that
the proportion of performance failures increased across
set-sizes. Previous lapse models have assumed that the
rate of performance failures is constant across set-size.
Instead, a repeated-measures ANOVA reveals that there
is a significant difference in performance failures between
set-sizes, F(3.33, 130.02) = 5.16, p = .001, with per-
formance failures increasing across set-size (Figure 1D).
We ran planned simple contrasts to test how the rate
of performance failures at earlier set-sizes compared to
the rate at the highest set-size (6 items). We found that
the only nonsignificant contrast was for the rates at set-
size 5 and set-size 6, F(1, 39) = 0.44, p = .51. All other
set-sizes had failure rates lower than set-size 6, minimum
difference p < .03. Additionally, the relationship between
change detection capacity and set-size 6 performance fail-
ures is the strongest, » = —.55, p < .01, 95% CI [—0.73,
—0.29], (Figure 1E).

This set of correlations reveals that, although perfor-
mance failures occur at all set-sizes, they are consistently
diagnostic of individual differences in capacity only for
supracapacity set-sizes. Thus, although all participants
perform very poorly on a subset of trials, low-capacity
individuals display much greater proportions of poor
performance trials. Furthermore, this difference between
high- and low-capacity participants emerges only for
supracapacity arrays, supporting an attentional control
model over a lapse model. Given these findings, we next
examined performance for a task where participants
repeatedly performed set-size 6 trials; this allowed for a
more precise characterization in performance distribu-
tions and how performance may change over time.

Fluctuations in Whole-report Performance Predict
Change Detection Capacity

In Experiment 1b, a new sample of participants completed
300 trials of set-size 6, allowing us to examine fluctuations
in task performance that are independent of trial-by-trial
variability in task difficulty. The mean change detection
K was 2.90 (SD = 0.98), and the mean whole-report accu-
racy was 2.87 (SD = 0.49). Again, we found a strong posi-
tive relationship between change detection K and overall
whole-report performance, » = .55, p < .01 95% CI
[0.30, 0.73] (Figure 2A).

We initially examined individual differences in a coarse
manner by splitting participants into three groups based
on their change detection performance (Figure 2B).
Participants in the low-K group had change detection
scores more than one standard deviation below the mean
K score. Likewise participants in the high-K group had
change detection scores more than one standard devia-
tion above the mean K score. All other participants were
placed in the middle K group. As can be seen by the dis-

tributions, the prevalence of performance failures (0, 1,
or 2 correct) increases across these performance groups.
A simple lapse model of performance would predict
bimodality, with large proportions of trials at 0 and at
typical capacity values. Here, the low-capacity group
has more complete failures (0 or 1 correct) than the
high-capacity group, but neither group shows bimodality.
Instead, this difference in performance failures appears
to be part of an overall shift in performance distributions
that is more consistent with an attentional control model
of individual differences. We observe a downward shift
in performance distributions for low-K participants and
an upward shift for high-K participants. However, although
using an extreme groups split is useful for summarizing
gross differences between groups, such an approach often
creates statistical problems (Conway et al., 2005). As such,
we also wanted to examine the fine-grained, correlational
differences between participants’ distributions.

To better visualize how subtle distributional shifts cor-
respond with visual working memory capacity, we can
plot distributions from all participants in a single heat
map and sort the rows by change detection K (Figure 2C).
The heat map depicts the distribution of number correct
for all participants. Each horizontal line represents a dif-
ferent participant; the lines are arranged along the y axis
according to each participant’s change detection score.
The x axis represents different trial outcomes, between 0
and 6 correct. Intensity of the heat scale represents pro-
portion of trials that fall into each score category. Here,
we can see a strong, dark band at three items, indicating
that most participants had a larger proportion of trials in
which they scored 3 correct. Again, none of the partici-
pants show a pattern that is consistent with a bimodal
lapse model of performance. To quantify the relationship
between K and performance outcomes, we present
the correlation values for each level of performance
(Figure 2D). As suggested by the consistent gray band
at 3 items correct, the correlation between number of
three correct trials and K was nonsignificant (» = .02,
p = .89, 95% CI [—0.27, 0.31]). On the other hand, the
number of correct objects in categories above (r = .54,
p < .001, 95% CI [0.66, 0.88]) and below (r = —.52,
p < .001, 95% CI [—0.71, —0.26]) this mode strongly
predicted K.

Monte Carlo Simulation of an Attentional Control
Model Is Better than a Lapse Model

The greater number of trials in Experiment 1b allowed us
to use simulation approaches to test potential models of
individual differences in performance. In particular, we
were interested in whether performance failures are
better characterized as an all or nothing engagement in
the task (lapses) or as varying degrees of engagement
in the task (attentional control). For the purposes of
modeling, the size of our maximum resource pool is
described in items, but this is only because of the nature
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Figure 2. Whole-report performance distributions for Experiment 1b. (A) Correlation between mean whole-report performance and change
detection capacity in Experiment 1b. (B) Performance distributions for participants split into extreme groups by their change detection score.

(C) Performance distributions for all participants in Experiment 1b. Each column represents the performance outcome (number of items correct
for a given trial), and each row represents a participant (sorted by capacity). Differences between participants are best characterized as a subtle
upward or downward shift of the performance distribution (with a central tendency at 3 for most participants). (D) Performance outcomes correlate
with change detection estimates of capacity for all levels of performance except for 3 correct.

of our behavioral assay. Our task necessarily involves a
discrete outcome (a discrete number of items correct
out of six), and all of our modeling efforts rely upon such
estimates of trial-by-trial performance. However, this
experiment cannot speak to any of the current debates
about the nature of the limit on working memory. We
make no claims that discrete slots models are preferred
over continuous resources models on the basis of these
data. Instead, we are interested in tracking variations in a
participant’s typical performance level (the deployment
of their resources, whatever the underlying structure of
the resources). Indeed, it has been proposed that both
discrete and continuous models of working memory re-
sources could plausibly implement a resource that varies
from trial to trial (Van den Berg et al., 2014).
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Lapse Performance and Guessing Inflation

Before testing lapse and attentional control models, we
first characterized the performance outcomes for guess-
ing among six items and the effects of guessing inflation.
Guessing without replacement for set-size 6 yielded 0
or 1 correct 85% of the time for nine possible colors
(Figure 3A). This means that, on the remaining 15-17%
of guessing trials, a participant may have reported two or
more items correct, even when they truly had zero items
in mind. Given our simulation results, we used 0 or 1 cor-
rect as a conservative definition of performance failures
for all analyses. We also ran a simulation to account for
the effects of guessing inflation given knowledge about
three items and guessing without replacement. The
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Figure 3. Monte Carlo simulation of lapse performance and guessing
inflation. (A) Results from a simulation of guessing without replacement
from nine colors over six objects. (B) Results from a simulation of
guessing inflation when participants get 3 items correct and guess
without replacement from the remaining colors over 3 objects.

guessing inflation distribution has a strong peak at 3 but
also has a large number of trials where participants get 4
or 5 items correct by chance (45%; Figure 3B). Thus,
guessing inflation can account for a large percentage of
above 3 trials for a participant with a true maximum
capacity of 3, and it is important to control for this effect
in any simulation model.

Testing Lapse and Attentional Control Models

The lapse model specified that lapse events occur as a
total loss of attentional engagement, whereas the atten-
tional control model specified that lapse events occur

as a variable loss of attentional engagement. Using a
maximum capacity parameter of 3 items correct, our
results show that we could successfully recreate the ob-
served mean whole report performance with both the
lapse model (R* = .95, p < .01, 95% CI [0.90, 0.97])
and the graded attentional control model (R* = .82,
p < .01, 95% CI [0.70, 0.90]. However, only the atten-
tional control model reliably fit the observed distribution
of responses (mean RMSE = 0.14 [0.01]; values in
brackets represent SEM). The failure of the complete
lapse model (mean RMSE = 0.29 [0.01]) was due to an
overestimation of the proportion of trials in which indi-
viduals reported zero or three and an underestimation
of the proportion of trials in which individuals reported
two items, thus producing a bimodal distribution of
expected responses. This difference in model fit was
significantly different, #(43) = —8.5, p = 4.5 x 10~
95% CI [—0.11, —0.17]. Additionally, we found that the
attentional control model is better than the complete
lapse model for low-K participants, #(5) = —14.1, p =
1.64 X 107>, 95% CI [—0.33, —0.24], and middle-K
participants, £(30) = —8.34, p = 1.3 x 10~7, 95% CI
[—0.17, —0.10], although neither model was good for
extremely high-K participants, ¢(6) = —0.51, p = .31,
95% CI [—0.07, 0.03] (Figure 4).

Next, we wanted to test whether changing the maxi-
mum capacity parameter in the attentional control model
would result in increased fit for a different participant. In
particular, we noticed that the high-K group was fit poorly
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Figure 4. Monte Carlo simulation results for lapse and attentional control models of performance fluctuations. (A) The simulated mean number
correct from the lapse model as a function of the actual mean number correct. (B) Data (gray bars) and lapse model fits (black lines) from the
extreme groups split of participants. (C) The simulated mean number correct from the attentional control model as a function of the actual mean
number correct. (D) Data (gray bars) and attentional control model fits (black lines) shown over the extreme groups split of participants.
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by a maximum capacity of three items (for either model).
Additionally, we thought that participants in the low-K
group, with an overall downward shifted distribution,
may be better fit by a maximum capacity of two items.
We found that changing the maximum capacity parameter
from three to two items did not improve fits for the low-K
group (ARMSE = +0.04 [0.04], p = .30) and significantly
decreased fits for the other two groups (ARMSE = +0.21
[0.02],p =6 x 10~ and 4+0.23 [0.03], p = .001, respec-
tively). Next, we tested if increasing the maximum capac-
ity parameter would increase fits for the high-K group.
This model reproduced means for participants, R =
0.96, p < .01,95% CI [0.92, 0.98]. Increasing the maximum
capacity parameter from three to four improves fits for the
high-K group (ARMSE = —0.19 [0.04], p = .005) but signif-
icantly decreases fits for the low-K (ARMSE = +0.09 [0.02],
p = .005) and middle-K (ARMSE = +0.03 [0.01], p = .04)
groups. Finally, we tested a model in which there is no ca-
pacity maximum (maximum capacity parameter is six
items). We found that this model accurately corresponds
to mean performance, R = 0.91, p < .01, 95% CI [0.83,
0.95], but resulted in poor fits that were significantly worse
than the proposed limited capacity model (ARMSE = +0.16
[0.02], 1(43) = —8.66, p = 3 x 10~ "', 95% CI [—0.19,
—0.12)).

Performance Fluctuations Occur Consistently
over Time

One alternative explanation for the increased prevalence
of performance failures for low-K participants is that they
took much longer to learn the task and had an inflated
level of performance failures in early blocks. Similarly,
the relationship between performance failures and capac-
ity could also be explained if low-K participants “give up”
at the end of the experiment. To test these time-based
explanations of performance, we examined the occur-
rence of performance failures over time.

In Figure 5A, we illustrate performance for all partici-
pants and all trials across time. Each row represents a par-
ticipant, and the rows are sorted by overall whole report
performance. As such, low-performing participants are
on the bottom of the graph, and high-performing partic-
ipants are on the top. Black tick marks represent extreme
performance failures (0 or 1 correct), gray tick marks rep-
resent below a typical modal performance (2 correct),
and white tick marks represent full engagement trials
(3 or more correct). Red vertical lines represent block
breaks. Because there was only condition in Experiment
2 (set-size 6), there is a unique opportunity to look at
variations in working memory performance, on a single
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trial basis, that are not due to condition or set-size dif-
ficulty. Instead, fluctuations in performance represent
fluctuations in task engagement. As can be seen by the
heterogeneous appearance of black and white tick marks,
performance failures are scattered throughout the exper-
iment for both high and low-K participants.

To quantify this trend, we examined the frequency of
performance failures over time (Figure 5B). We per-
formed a median split based on change detection K
and ran a two-way repeated-measures ANOVA with Run
(9 blocks, within participants) and Group (2 groups, be-
tween participants) as the main factors. We plotted aver-
age accuracy for all participants and blocks, but we
restricted the ANOVA to Blocks 1-9 because some partic-
ipants did not finish Block 10 (those with pink tick marks
in Figure 5A). We found a significant main effect of
Group, F(1, 42) = 132.5, p < .001, and of Block, F(8,
336) = 4.96, p < .001 but no interaction of Block and
Group, F(8, 336) = 0.677, p = .71. The lack of interaction
indicates that, although there were block effects for both
groups of participants, the difference between high- and
low-capacity participants was consistent over time.
Post hoc pairwise comparisons revealed that only the first
block was significantly different from any of the other
blocks. Lapses were significantly higher in the first block
than in Blocks 2 through 5 (p < .015) or in Blocks 7
through 8 (p < .02). Notably, participants did not com-
plete a set of practice trials before beginning the experi-
ment, so a learning effect would be expected. In
summary, an increased lapse rate in the first block ex-
plains the difference in lapses over time, but a differential
ability to learn the task does not explain the consistent
difference in lapses between participants.

As an additional check on the reliability of whole-
report performance within a session, we performed a
between-block reliability analysis. The reliability of aver-
age performance and performance failures is shown in
Figure 5C as the correlation between performance on
even blocks and odd blocks. Because not all participants
finished 10 blocks, we restricted the analysis to Blocks 2-9
and included all participants. We used Cronbach’s alpha
to quantify reliability. Performance failures were highly
reliable for both mean performance (Cronbach’s alpha =
.97, for Blocks 2-9) and for performance failures (Cronbach’s
alpha = .93, for Blocks 2-9). In summary, we show that
differences in the preponderance of performance failures
are not due to learning differences between high- and
low-capacity participants. Furthermore, whole-report esti-
mates of working memory performance are highly reliable
throughout the session.

Performance Fluctuations Are Not Due to
Artifacts or Sensory Encoding Differences

In Experiment 2, we recorded EOG and EEG while par-
ticipants completed the whole-report task. First, we
wanted to examine the role of simple task noncompliance
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Figure 6. Performance fluctuations do not relate to task compliance
or sensory encoding. (A) The prevalence of poor trials (2 or fewer
correct) before and after removing ocular artifacts. (B) The P1/N1
visual-evoked response as a function of performance outcome
(good versus poor trials).

on the rate of poor performance trials (less than 3 items
correct). We instructed participants to keep their eyes on
a fixation cross and not to close their eyes during the pre-
sentation of the memory array; if participants did not fol-
low these instructions (e.g., moving their eyes away from
the screen, blinking during the presentation array), then
they may show degraded performance. To test this pos-
sibility, we measured the occurrence of poor performance
trials before and after excluding trials containing ocular
artifacts. We found that the overall ratio of low-performance
trials was not significantly changed after removing ocular
artifacts, £(22) = 1.2, p = .24 (Figure 6A), and the relation-
ship between poor performance trials and change detec-
tion K was preserved, R* = 23, p = .022. Furthermore,
the relationship between the percentage of artifact-rejected
trials and K was nonsignificant, R* < .01, p = .85. Thus, for
the vast majority of lapse trials, the participant’s eyes are
indeed open and pointed toward the screen. The per-
centage of trials that participants are negligent of eye
movement instructions does not predict their overall per-
formance level.

Next, we wanted to examine whether or not poor per-
formance trials were associated with decreased sensory
processing (Weissman, Roberts, Visscher, & Woldorff,
2006). We measured the mean amplitudes of the visual-
evoked P1/N1 ERP components and found that there
were no significant differences in amplitude between
poor trials and good trials (greater than 3 items correct)
for the P1 (70-120 msec), £(22) = 0.59, p = .56, or the N1
(130-170 msec), £(22) = 0.49, p = .63 (Figure 6B). Together,
we find no evidence that participants show decreased
early sensory processing of external stimuli during poor
performance trials.

Performance Fluctuations Are Related to
Frontal Theta and Posterior Alpha Power

Finally, we tested whether hypothesized neural correlates
of attentional engagement and working memory predicted
whole-report performance. In particular, we focused on
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spectral power in the theta and alpha frequency bands.
Frontal theta power has been shown to relate to measures
of executive control (Cavanagh & Frank, 2014), working
memory load (Deiber et al., 2007; Jensen & Tesche,
2002), successful retrieval (Hsieh & Ranganath, 2014),
and manipulation of information in working memory
(Itthipuripat, Wessel, & Aron, 2013). Decreased alpha
power has been shown to relate to attention and seman-
tic memory performance (Klimesch, 1999; Klimesch,
Doppelmayr, Schimke, & Ripper, 1997) and with task
difficulty and working memory load (Stipacek, Grabner,
Neuper, Fink, & Neubauer, 2003; Gevins, 2000; Gevins,
Smith, McEvoy, & Yu, 1997). Here, we wanted to exam-
ine whether, given the same difficult task load, we could
predict trial-to-trial fluctuations in participants’ success
using markers shown to be related to overall task difficulty.

First, we wanted to test the simple hypothesis that aver-
age frontal theta or posterior alpha power (calculated over
the entire trial period) correlates with overall working
memory ability. Although some studies have found evi-
dence for a relationship between individual differences
in spectral power and cognitive ability (Zakrzewska &
Brzezicka, 2014; Gevins, 2000), such relationships are more
often unreported in the literature. In our study, we found
no relationship of mean posterior alpha power with either
change detection (» = .07, p = .88) or whole-report per-

formance (r = —.24, p = .26). We found that frontal theta
power correlates positively with change detection capacity
(r = 45, p = .03), consistent with previous measures of
theta power and working memory. However, theta power
did not correlate with whole-report performance (» = .28,
p = .19), despite the strong relationship between change
detection and working memory performance for this
sample (» = .61, p < .01). In summary, we conclude that
overall frontal theta power may relate to working memory
performance in some settings, but either (1) it does not
consistently relate to all working memory tasks or (2) the
power in this sample is insufficient to show the relationship
consistently across tasks.

Despite inconsistent findings for a strong between-
participant relationship of working memory ability and
theta, we are in a good position to examine within-participant,
trial-by-trial predictors of performance. In the EEG experi-
ment, participants completed many trials of the same con-
dition; as such, we have a large number of trials to examine
oscillatory predictors of trial-by-trial performance. In Figure 7,
each subplot represents the time—frequency plot for a
single electrode during Experiment 2. The heat map is
created by subtracting the time—frequency plot for poor
trials (£2 correct) from good trials (=4 correct). A dif-
ference in theta is especially prominent at frontal channels,
whereas a difference in alpha power is prominent at the
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Figure 7. Spectrogram for good trials minus poor trials at all electrode sites measured. Each spectrogram represents spectral power at all frequencies

from 4 to 30 Hz for each of the sites measured during Experiment 2.
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posterior channels. Collapsing across frontal electrodes
(Figure 8A), we found that decreased frontal theta power
(4-7 Hz) predicted poor performance trials (Figure 8B)
starting about midway through the pretrial period and sus-
taining throughout the retention interval. To summarize
significance for key trial events, we examined theta power
for early and late pretrial periods, the encoding period, and
the retention interval (Figure 8B). Time-point zero cor-
responds to stimulus onset. We found that theta did not
predict performance in the first half of the pre-trial period
(—1400 to —700 msec), £(22) = 0.845, p = .80, but began
to predict performance in the second half of the pretrial
period, #(22) = 2.05, p = .026. Theta power continued to
predict working memory performance throughout the
encoding period (0-250 msec), #(22) = 3.06, p < .01,
and during the retention interval (250-1550 msec), £(22) =
2.80,p < .01."

Collapsing across posterior channels (Figure 8C), we
found that decreased alpha power (8-12 Hz) was asso-
ciated with higher performance, starting near the end
of the retention interval (around 800 msec). We again
determined alpha’s ability to predict trial performance
during key trial periods (Figure 8D). Unlike frontal theta,
posterior alpha power did not predict performance in the
pretrial period (—1400 to 0 msec), #(22) = 0.62, p = .73,
or in the encoding period (0 to 250 msec), #(22) = 1.16,
p = .13. However, decreased alpha power started to

predict better performance during the retention interval
(250-1550 msec), 1(22) = 2.50, p = .01. This effect was
driven by the second half of the retention interval. Alpha
power was no different for good and poor trials in the
first half of the retention interval (250-950 msec), #(22) =
1.2, p = .12, but was significantly modulated in the
second half of the retention interval, £(22) = 2.57, p <
.01, perhaps indicating that participants were less likely to
drop items from memory toward the end of successful tri-
als. This finding is consistent with previous work showing
that greater alpha-band desynchronization is associated
with increasing cognitive load.

DISCUSSION

We investigated two plausible models for how within-
participant variance in working memory performance
within a session gives rise to individual differences in
working memory capacity. To do this, we developed
and validated a novel whole-report task that provides a
trial-by-trial estimate of working memory successes and
failures. Examining several criteria, we found evidence
against a coarse lapse model and substantial positive evi-
dence in favor of an attentional control model. First, we
found that failure rates increased as the task-load in-
creased. This result is inconsistent with lapse models that
assume that such failures should be equivalent irrespective
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of task demands (Rouder et al., 2008, 2011) but is con-
sistent with an attentional control account (Fukuda,
Woodman, & Vogel, in press). Second, we observed that,
although low-capacity individuals had more complete
performance failures than high-capacity individuals, this
higher failure rate was better explained as a downward shift
of performance distributions for the low-capacity indi-
viduals. We found no evidence for a bimodal distribution
of performance, as would be predicted by a lapse model.
This clear distinction between the two hypothesized per-
formance distributions was confirmed by using simulations
to test the lapse and attentional control models. We found
that, although both models could simulate mean perfor-
mance levels, only the attentional control model produced
the distribution of outcomes observed in the data. Finally,
our neural data indicate that performance failures are asso-
ciated with changes in oscillatory signatures of attentional
control: decreased frontal theta power and increased pos-
terior alpha power.

In addition to providing evidence for the attentional
control model, our data allowed us to test several poten-
tial mechanisms that potentially underlie performance
failures. One plausible explanation of individual differ-
ences in the rate of performance failures is the effect of
time within the session; individual differences could sim-
ply be due to how quickly participants learn the task
(e.g., many failures at beginning) or become fatigued
(e.g., many failures at the end). This hypothesis predicts
that individual differences are disproportionately ex-
plained by performance at the very beginning or end of
the experiment. Contrary to this hypothesis we find that
performance failures occur consistently throughout the
experiment and that the differences between high and
low-capacity individuals are stable throughout the entire
experiment. A second explanation for performance fail-
ures is simple task noncompliance. Although we instruct
participants to keep their eyes open and focused on the
central fixation dot, participants blinking or moving their
eyes away from fixation could result in poor perfor-
mance. However, we found no relationship between
the rate of EOG artifacts and performance failures and
that these failure rates are preserved even after excluding
trials with ocular artifacts. A third reason for poor perfor-
mance is that there is insufficient sensory encoding of the
memory array items. However, we found no difference in
the visual evoked response (P1 and N1) to the memory
array items between poor and good performance trials.
Together, these results suggest that these working mem-
ory performance failures are not simply due to slow learn-
ing, fatigue, ocular artifacts, or poor sensory encoding.

In contrast to the above results, our neural measures
provide positive evidence that performance failures are
related to well-known oscillatory markers of attentional
control mechanisms: frontal theta and posterior alpha.
We find that mean frontal theta power is higher on suc-
cess trials than for failure trials and that this difference
begins a few hundred milliseconds before the trial even
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begins and persists throughout the retention period of
the task. There is a substantial literature relating frontal
theta power to attentional control and memory success,
and the current work is broadly consistent with these
findings. In addition, the finding that theta power can
distinguish between working memory successes and fail-
ures before the trial has begun suggests that it reflects
preparatory mechanisms of attentional control that need
to be engaged in advance to adequately perform these
tasks (Leber, Turk-Browne, & Chun, 2008). Likewise,
toward the end of the retention interval, we observe that
increased posterior alpha power predicts performance
failures. This may reflect an inability to sustain the alpha
desynchronization that is necessary for ongoing memory
storage. Together, our findings fit well within the litera-
ture showing that increased theta and decreased alpha at
encoding predict successful memory performance (Stipacek
et al., 2003; Klimesch, 1999; Klimesch et al., 1997). Our
findings are also consistent with hypotheses about (1) the
strong relationship between working memory and atten-
tion (Unsworth et al., 2014; Chun, Golomb, & Turk-
Browne, 2011; Engle & Kane, 2004), (2) the trial-to-trial
variability of attention (Esterman, Rosenberg, & Noonan,
2014; Esterman, Noonan, Rosenberg, & DeGutis, 2013),
and (3) the importance of prefrontal networks in sustaining
attentional control (Liesefeld, Liesefeld, & Zimmer, 2014;
Giesbrecht, Woldorff, Song, & Mangun, 2003).

Individual differences in visual working memory capacity
are robust, stable, and predictive of fluid intelligence and
have been proposed to be due to variations in attentional
control (Unsworth et al., 2014; Fukuda et al., 2010; Engle
etal, 1999). However, a compelling alternative model pro-
poses that these differences are instead due to how fre-
quently the individual is completely disengaged from the
task at hand. Our current results reject such a coarse lapse
model and suggest that graded fluctuations in attentional
control from trial to trial within a session drive the individ-
ual differences in capacity that are observed in traditional
aggregate measures of performance. Failed attentional
control on a trial would be expected to produce a wide
swath of processing errors such as insufficient individua-
tion, poor resolution, item position swapping, and retrieval
failures. The present work suggests that the ability to pre-
vent such failures by consistently engaging attentional
control mechanisms during challenging tasks is a central
component of an individual’s cognitive ability.
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Note

1. p values are not corrected for multiple comparisons; the
Bonferroni-corrected threshold for four comparisons is p =
.013. The pretrial effect (p = .026) does not survive this very
conservative thresholding. If we choose only a single time
window (—700 to 0 msec), we can check for this effect at all
electrodes of interest (see Figure 7): Fz (p = .026), F3 (p =
.037), F4 (p = .1), T3 (p = .03).
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